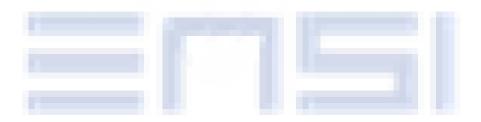
Semester 5 Modules : Specialization Data Science & computer Vision (Vision par Ordinateur et Science des données - DS-CV-)

Code	Title	type	Coe	effi EC nts	тs ^{Tot}	al wo Co load	rk- Pr ntact h S	iva ^{jour} tuc
AI.5.12	Machine and Deep Learning	Compulsory	2	2	50	30	20	
CV.5.1	Restoration and digital Considerations	Compulsory	2	2	50	30	20	
CV.5.2	Shape recognition and geometric invariants	Compulsory	2	2	50	30	20	
CV.5.3	3D representation: Curves, Shapes and Sur- faces	Optional	2	2	50	30	20	
CV.5.4	Discrete Representation of 3D Objects	Optional	2	2	50	30	20	
CV.5.5	Compression techniques for computer vision applications	Optional	2	2	50	30	20	
CV.5.6	Mathematical Morphology and medical appli- cations	Compulsory	2	2	50	30	20	
CV.5.7	Multispectral image processing	Compulsory	2	2	50	30	20	
CV.5.8	Multidimensional signal processing	Optional	2	2	50	30	20	
CV.5.9	Computer vision	Optional	2	2	50	30	20	
ISA.5.1	Big Data	Compulsory	2	2	50	30	20	
AI.5. 13	Machine and Deep Learning Workshops	Compulsory	1	1	25	15	10	
AI.5.14	Speech recognition & Chatbots application	Compulsory	1	1	25	15	10	
AI.5.15	Optimization and Reinforcement Learning	Compulsory	1	1	25	15	10	
AI.5.16	Introduction to Natural Language Processing	Optional	1	1	25	15	10	
CV.5.11	Medical Imaging Workshops	Compulsory	1	1	25	15	10	
DOS.5.2	Blockchain	Optional	1	1	25	15	10	
DOS.5.3	IoT	Optional	1	1	25	15	10	
DOS.5.8	Introduction to cloud computing	Optional	1	1	25	15	10	
SE.5.3	Mobile Development	Optional	1	1	25	15	10	
	Complementary Module 1		2	2	50	30	20	
	Complementary Module 2		2	2	50	30	20	
	Complementary Module 3		2	2	50	30	20	ļ
	Complementary Module 4		1	1	25	15	10	l
	Complementary Module 5		1	1	25	15	10	
	Complementary Module 6		1	1	25	15	10	

AI.5.12 Machine and Deep Learning


Module designation	AI.5.12 Machine and Deep Learning		
Semester(s) in which the mod-	S5		
ule is taught			
Person responsible for the mod-	Faouzi Ghorbel		
ule (coordinator)			
Language	French		
Relation to curriculum	Compulsory		
Teaching methods	lesson, lab works.		
Workload (incl. contact hours,	Total workload:50h		
self-study hours)	Contact hours :30h		
	Private study:20h		
Credit points	2 ECTS		
Required and recommended	IMA.2.1 Image Introduction		
prerequisites for joining the	• Basic probability and statistics (conditional and joint distribution,		
module	independence, Bayes rule, random variables, expectation, mean,		
	median, mode, central limit theorem)		
	Basic linear algebra (matrix/vector multiplications, systems of lin-		
	ear equations, SVD)		
	 Multivariate calculus (derivative w.r.t. vector and matrix variables) Basic Programming Skills (Matlab and Python) 		
	Competencies: C1, C2, C3, C4		
Module objectives/intended	In this course, fundamental principles and methods of machine		
learning outcomes	learning will be introduced, analyzed and practically implemented.		
	An overview of existing processings and methods, at teaching how		
	to design and train a deep neural network for a given task, and at		
	providing the theoretical basis to go beyond the topics directly seen		
	in the course.		
Content	Chapter I. Basic regression and classification concepts and meth- ods:		
	1. Linear models,		
	2. overfitting,		
	3. linear regression,		
	4. Ridge regression,		
	5. logistic regression,		
	6. k-NN,		
	7. SVMs and kernel methods		
	Chapter II. Fundamental concepts		
	 cost-functions and optimization, cross-validation and bias-variance trade-off, 		
	 cross-validation and blas-variance trade-oil, curse of dimensionality. 		
	Chapter III. Neural Networks		
	1. Representation power,		
	2. Backpropagation,		
	3. activation functions, CNN,		
	4. regularization,		
	5. data augmentation,		
	6. dropout		
	Chapter IV. Unsupervised learning:		
	1. k-means clustering, 2. Caussian mixture models and the EM algorithm		
	 Gaussian mixture models and the EM algorithm. Basics of self-supervised learning 		
	Chapter V. Dimensionality reduction:		
	1. PCA and matrix factorization,		
	2. word embeddings		
	Chapter VI. Advanced methods:		
	1. Adversarial learning,		
	· · · · · · · · · · · · · · · · · · ·		

	 Generative adversarial networks Chapter VII. Deep Learning What is deep learning introduction to tensors. Generalized networks, autograd, batch processing, convolutional networks. Deep models for Computer Vision Analysis of deep models.
Examination forms	100% Final exam
Study and examination require- ments	10/20
Reading list	 Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern Recognition and Machine Learning. New York: Springer. Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspec- tive. MIT Press. Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding Ma- chine Learning: From Theory to Algorithms. Cambridge University Press. Nielsen, M. A. (2015). Neural Networks and Deep Learning. San Francisco, CA, USA: Determination Press.
	Hastie, T., Tibshirani, R., Friedman, J. H., et al. (2009). The Ele- ments of Statistical Learning: Data Mining, Inference, and Predic- tion. New York: Springer.

CV.5.1 Restoration and Digital Considerations

Module designation	CV.5.1 Restoration and Digital Considerations
Semester(s) in which the mod-	S5
ule is taught	
Person responsible for the mod-	Slim MHIRI
ule (coordinator)	
Language	French
Relation to curriculum	Compulsory
Teaching methods	lesson, lab works.
Workload (incl. contact hours, self-study hours)	Total workload:50h Contact hours :30h Private study:20h
Credit points	2 ECTS
Required and recommended prerequisites for joining the module	 IMA.2.1 Image Introduction Basic probability and statistics (conditional and joint distribution, independence, Bayes rule, random variables, expectation, mean, median, mode, central limit theorem) Basic linear algebra (matrix/vector multiplications, systems of linear equations, SVD) Multivariate calculus (derivative w.r.t. vector and matrix variables) Basic Programming Skills (Matlab and Python)
Module objectives/intended learning outcomes	 This course aims to: present, within the unifying framework of Bayesian estimation, methods for solving inverse problems. understand particularly image restoration, signal deconvolution and image reconstruction. Competencies: C1, C9

Chapter 1. Inverse problems examples: Deconvolution, Image res- toration, Image reconstruction, Fourier synthesis, Chapter 2. Classification of inversion methods: Analytical, Para- metric and Non Parametric algebraic methods Chapter 3. Regularization theory Chapter 4. Bayesian inference for invese problems Chapter 5. Full Bayesian with hyperparameter estimation Chapter 6. Two main steps in Bayesian approach: Prior modeling and Bayesian computation Chapter 7. Priors which enforce sparsity Chapter 8. Heavy tailed: Double Exponential, Generalized Gauss- ian, Chapter 9. Mixture models: Mixture of Gaussians, Student-t, Δ Gauss-Markov-Potts Chapter 10. Computational tools: MCMC and Variational Bayesian Approximation Chapter 11. Some results and applications : X ray Computed To- mography, Microwave and Ultrasound imaging, Sattelite Image separation, Hyperspectral image processing, Spectrometry, CMB,
100% Final exam
10/20
Gonzalez, R. C. (2009). Digital Image Processing. Pearson Education India.

CV.5.2 Shape Recognition and Geometric Invariants

	e Recognition and deometric moarra
Module designation	CV.5.2 Shape Recognition and Geometric Invariants
Semester(s) in which the mod-	S5
ule is taught	
Person responsible for the mod-	Faouzi Ghorbel
ule (coordinator)	
Language	French
Relation to curriculum	Compulsory
Teaching methods	lesson, lab works
Workload (incl. contact hours,	Total workload:50h
self-study hours)	Contact hours :30h
, ,	Private study:20h
Cradit painta	2 ECTS
Credit points Required and recommended	IMA.2.1 Image Introduction
prerequisites for joining the	Basic probability and statistics (conditional and joint distribution,
module	independence, Bayes rule, random variables, expectation, mean,
module	median, mode, central limit theorem)
	Basic linear algebra (matrix/vector multiplications, systems of lin-
	ear equations, SVD)
	• Multivariate calculus (derivative w.r.t. vector and matrix variables)
	Basic Programming Skills (Matlab and Python)
Module objectives/intended	This course aims to Introduce the main methods of image analysis
learning outcomes	and pattern recognition.
	Competencies: C1, C9
Content	
	Chapter I. Shape representation and description
	Chapter II. Shape recognition
	Chapter III. Invariant Theory
	Chapter IV. Practical works on computers
Examination forms	100% Final exam
Study and examination require-	10/20
ments	
Reading list	Kunt, M. (2000). Reconnaissance des formes et analyse de
	scènes. PPUR presses polytechniques.
	Sonka, M., Hlavac, V., & Boyle, R. (2014). Image processing, anal-
	ysis, and machine vision. Cengage Learning.

CV.5.3 3D representation: Curves, Shapes and Surfaces

	i epi esentation. Cui ves, shapes anu su
Module designation	CV.5.3 3D representation: Curves, Shapes and Surfaces
Semester(s) in which the	S5
module is taught	
Person responsible for the	Mehdi Hajji
module (coordinator)	
Language	French
Relation to curriculum	Compulsory
Teaching methods	lesson, lab works, projects.
Workload (incl. contact	Total workload:50h
hours, self-study hours)	Contact hours :30h
	Private study:20h
Credit points	2 ECTS
Required and recom-	IMA.2.1 Image Introduction
mended prerequisites for	
joining the module	
Module objectives/intended	This course aims to:
learning outcomes	 make a description of 3D curves and 3D surfaces.
	- explain the different approaches to representing 3D shapes.
	- make an isotropic representation of 3D object surfaces
	Competencies: C1, C9
Content	Chapter I - Introduction
	a. Introduction
	b. Difficulties and limitations
	c. Problem
	d. Desirable properties
	e. Goals
	Chapter II- Curves in 3D
	a. Parametric curves: general information and metric study
	b. Local shape of plane curves
	c. Local shape of left curves
	d. Exercises
	Chapter III- 3D surfaces
	a. Introduction
	b. Parametric surfaces
	c. Local shape of a surface
	d. Exercises
	Chapter IV- Different approaches to the representation of 3D shapes
	a. Introduction
	 b. Continuous representations: Implicit algebraic surfaces
	c. Discrete representations: Triangulations
	Chapter V- Isotropic representation of 3D object surfaces
	a. Introduction
	b. Problem of isotropy
	c. Pseudo reparameterization of IR3 surface
Examination forms	35% Continues evaluation + 65% Written exam
Study and examination re-	10/20
quirements	
Reading list	Farin, G. (2014). Curves and surfaces for computer-aided geometric
	design: A practical guide. Elsevier.

CV.5.4 Discrete Representation of 3D Objects

	ele representation of 5D objects
Module designation	CV.5.4 Discrete Representation of 3D Objects
Semester(s) in which the mod- ule is taught	S5
Person responsible for the mod- ule (coordinator)	Majdi Jribi
Language	French
Relation to curriculum	Optional
Teaching methods	lesson, projects.
Workload (incl. contact hours, self-study hours)	Total workload:50h Contact hours :30h Private study:20h
Credit points	2 ECTS
Required and recommended prerequisites for joining the module	IMA.2.1 Image Introduction
Module objectives/intended learning outcomes	 This course aims to: Understand the importance of 3D data in the field of shape recognition. Students are able to: Master 3D mesh simplification methods. Master 3D registration methods. Master of the methods of 3D objects construction from a discrete cloud of points. Competencies: C1, C9
Content	
	 I.1. Comprehension of 2D images and limitations I.2. 3D shape and discrete representation Chapter II. 3D object construction II.1. 3D modality acquisition II.2. Voronoi diagram II.3. Method 1 of construction: Delaunay triangulation II.4. Method 2 of construction: Crust triangulation Chapter III. 3D mesh simplification Chapter III. 3D mesh simplification notion III.2. Definition of the simplification notion III.3. The vertex clustering method III.4. The vertex removal method III.5. The edge collapse method III.6. The half edge collapse method II.7. Definition of the registration notion IV.1. Definition of the registration notion IV.2. Steps of registration
	IV.3. The ICP algorithm
Examination forms	35% Continues evaluation + 65% Written exam
Study and examination require- ments	10/20
Reading list	Montagnat, J., & Delingette, H. (2001). A review of deformable surfaces: Topology, geometry and deformation. Image and Vision Computing, 19(14), 1023-1040.
100	D. (10.220.04

Nikolaidis, N., & Pitas, I. (2000). 3D image processing algorithms.
J. Wiley & Sons.

CV.5.5 Compression Techniques for Computer Vision Applications

Аррисаціон	5
Module designation	CV.5.5 Compression Techniques for Computer Vision Applications
Semester(s) in which the mod- ule is taught	S5
Person responsible for the mod-	Dorsaf Sebai
ule (coordinator)	
Language	French
Relation to curriculum	Compulsory
Teaching methods	lesson, lab works, projects.
Workload (incl. contact hours, self-study hours)	Total workload:50h Contact hours :30h Private study:20h
Credit points	2 ECTS
Required and recommended prerequisites for joining the module	IMA.2.1 Image Introduction
Module objectives/intended learning outcomes	 This course aims to: Identify the role of images in the data science and computer vision fields. Identify the compression challenges in IoT context. Distinguish the basic concepts and different types of compression. Students are able to: Get familiarized with different compression techniques applied to different types of images in 2D and 3D contexts. Understand the main functional blocks of MPEG compression standards for still images and videos. Discover the new compression trends based on scalability and deep learning.
Content	Chapter 1. Basic concepts of visual data compression Chapter 2. Compression for 3D computer vision Chapter 3. Sparse representations Chapter 4. Scalable compression Chapter 5. Deep learning based compression Chapter 6. Compression in IoT context
Examination forms	100% Final exam
Study and examination require- ments	10/20
Reading list	 Yesilyurt, A. B. (2019). End-to-end learned image compression with conditional latent space modeling for entropy coding [Doctoral thesis]. Mosbah, S., Sebai, D., & Ghorbel, F. (2019). Analysis of SHVC Coding Tree Unit Partitioning for Depth Maps SNR Scalability. In 8th International Workshop on Representation, Analysis and Recognition of Shape and Motion from Imaging Data (RFMI). Rana, K., & Thakur, S. (2017). Data Compression Algorithm for Computer Vision Applications: A Survey. In International Conference on Computing Communication and Automation (ICCCA).
	ence on Computing, Communication and Automation (ICCCA). Ebrahimi, T., & Kunt, M. (1998). Visual data compression for mul- timedia applications. Proceedings of the IEEE, 86(6), 1109-1125.

CV.5.6 Mathematical Morphology and medical applications

application	5	
Module designation	CV.5.6 Mathematical Morphology and medical applications	
Semester(s) in which the mod-	S5	
ule is taught		
Person responsible for the mod-	Dorra DHOUIB	
ule (coordinator)		
Language	French	
Relation to curriculum	Compulsory	
Teaching methods	lesson, projects.	
Workload (incl. contact hours,	Total workload:50h	
self-study hours)	Contact hours :30h	
	Private study:20h	
Credit points	2 ECTS	
Required and recommended	IMA.2.1 Image Introduction	
prerequisites for joining the	•	
module		
Module objectives/intended	This course aims to:	
learning outcomes	 Understand the importance of mathematical mor- 	
	phology techniques in the field of medical images.	
	Students are able to:	
	 Master mathematical morphology techniques 	
	 Applicate mathematical morphology techniques in image and processing 	
	image analysis and processing Applicate mathematical morphology techniques 	
	for medical images	
	Competencies: C1, C9	
Content		
Content	Chapter I: Introduction	
	1. The different medical imaging methods	
	2. Fundamental concepts of the image	
	3. Pretreatment	
	Chapter II. Basic operators	
	1. Concept of treillis	
	2. Concept of sets	
	Properties of operations on sets	
	4. Minkowski operations	
	5. Binary morphological transformations	
	6. Morphological transformations on images in gray levels	
	7. Operators by combination	
	8. Operators by difference 9. Neighborhood transformations	
	Chapter III. Discreet representation and advanced operators	
	1. Geodesia	
	2. Discreet representation	
	3. Granulometry	
	4. Alternate sequential filter	
	5. Ultimate erodes	
	6. Geodesic measures	
	Chapter IV. Watershed and skeletonization	
	1. Watershed	
	2. Skeletonization	
Examination forms	35% Continues evaluation + 65% Written exam	
Study and examination require- ments	10/20	
Reading list	Maitre, H. (2003). Le traitement des images, coll. traitement du si-	
	gnal et de l'image (traité IC2). Lavoisier/Hermes Science Publica-	
	tions.	
L	1	

Najman, L., & Talbot, H. (Eds.). (2013). Mathematical morphol- ogy: From theory to applications. John Wiley & Sons.
Serra, J., & Soille, P. (Eds.). (2012). Mathematical morphology and its applications to image processing. Springer Science & Business Media.

CV.5.7 Multispectral image Processing

Module designation		CV.5.7 Multispectral Image Processing
Semester(s) in which	the mod-	S5
ule is taught		
Person responsible for	the mod-	Dorra Dhouib
ule (coordinator)		
Language		French
Relation to curriculum		Compulsory
Teaching methods		lesson, lab works
Workload (incl. conta	ict hours,	Total workload:50h
self-study hours)		Contact hours :30h
		Private study:20h
Credit points		2 ECTS
Required and recomm	ended	IMA.2.1 Image Introduction
prerequisites for joining		Basic probability and statistics (conditional and joint distribution,
module		independence, Bayes rule, random variables, expectation, mean,
		median, mode, central limit theorem)
		Basic linear algebra (matrix/vector multiplications, systems of lin-
		ear equations, SVD)
		• Multivariate calculus (derivative w.r.t. vector and matrix variables)
		Basic Programming Skills (Matlab and Python)
		Competencies: C1, C9
Module objectives/inte	nded	This course aims to:
learning outcomes	naca	- Detail optical remote sensing from satellites and airborne
		platforms.
		- Present different systems
		Students are able to:
		- acquire skills in image processing and machine/deep
		learning to extract end-products, such as land cover or risk
		maps, from the images.
Content		
		Chapter I. Basic concepts of remote sensing and digital imaging
		Chapter II. Platforms and sensors Chapter III. Information extraction, filtering, visual information
		Chapter IV. Image classification, with machine and deep learning
		Chapter V. Project: study a real (geospatial or other) problematic
		cessing techniques.
Examination forms		100% Final exam
Study and examination	n require-	10/20
ments	1	
Reading list		Caloz, R., & Collet, C. (2001). Précis de télédétection - Volume 3:
		Traitements numériques d'images de télédétection. PUQ.
		Camps-Valls, G., Tuia, D., Gómez-Chova, L., et al. (2011). Re-
		Mote sensing image processing. Synthesis Lectures on Image,
		Video, and Multimedia Processing, 5(1), 1-192.

CV.5.8 Multidimensional Signal Processing

Semester(s) in which the module is a construction of the staught Simester(s) Person responsible for the module (coordinator) Sim Mhiri Language French Relation to curriculum optional Teaching methods The course consists of lectures accompanied by practical work to consolidate the understanding of the concepts Workload (incl. contact hours, self-study hours) Total workload:50h Contact hours. 30h Private study:20h Credit points 2 ECTS Required and recommended prerequisites for joining the module MAT.1.2 Engineering Mathematic prerequisites for joining the module Module objectives/intended learning outcomes This course is concerned with understanding signals of more than one variable and with systems for processing them. The most common examples of these signals include images, video, 3D Content 1. Multi-D Discrete-Time(Space) Signals and Systems 1.1 Representation of Multi-D Signals, Special 2-D Sequences 1.2 Multi-D Linear Shift-Invariant Systems, Discrete Convolution 1.3 Separable Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Signals, Special 2-D Sequences 2.2 Multi-D Linear Shift-Invariant Systems 2.4 Implementation of Multi-D Signals, Special 2-D Sequences 3.2 Properties: Periodicity, Discrete-Time Signals and Systems 3.4 Implementat	Module designation	CV.5.8 Multidimentional Signal Processing
ule is taught		
Person responsible for the module (coordinator) Slim Mhiri Language French Relation to curriculum optional Teaching methods The course consists of lectures accompanied by practical work to consolidate the understanding of the concepts Workload (incl. contact hours, self-study hours) Total workload:50h Cerdit points 2 ECTS Required and recommended prerequisites for joining the module MAT.1.2 Engineering Mathematic Module objectives/intended learning outcomes This course is concerned with understanding signals of more than one variable and with systems for processing them. The most common examples of these signals include images, video, 3D Competencies: C1, C9 Content 1. Multi-D Discrete-Time(Space) Signals and Systems 1.1 Representation of Multi-D Signals, Special 2-D Sequences 1.2 Multi-D Linear Shift-Invariant Systems, Discrete Convolution 1.3 Separable Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Signals, Special 2-D Sequences 2.1 The Sampling Theorem, Reconstruction 2.2 Retangular Systems 3.4 Circular Convolution 3.2 General Preriodic Multi-D Sampling 2.3 General Preriodic Multi-D Sampling 2.4 2-D Hexagonal Sampled on Arbitrary Latti		
ule (coordinator) Image Prench Language French Relation to curriculum optional Teaching methods The course consists of lectures accompanied by practical work to consolidate the understanding of the concepts Workload (incl. contact hours, 30h Private study;20h Total workload:50h Contact hours :30h Private study;20h Credit points 2 ECTS Required and recommended prerequisites for joining the module MAT.1.2 Engineering Mathematic Module objectives/intended learning outcomes This course is concerned with understanding signals of more than one variable and with systems for processing them. The most common examples of these signals include images, video, 30… Content 1. Multi-D Discrete-Time(Space) Signals and Systems 1.1 Representation of Multi-D Signals, Special 2-D Sequences 1.2 Multi-D Linear Shift-Invariant Systems, Discrete Convolution 1.2 Multi-D Segnable Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Signals and Systems 0.4 Multi-D Signaling Sampling 2.3 General Periodic Multi-D Ensity 2.6 Processing Signals Sampled on Arbitrary Lattices 0.5 Multi-D Discrete Fourier Transform 3.1 Computation Transform for Multi-D Finite-Length Signals 3.6 Implementation: Direct, Row-Column Decomposition 3.6 Implementation: Di		Slim Mhiri
Language French Relation to curriculum optional Teaching methods The course consists of lectures accompanied by practical work to consolidate the understanding of the concepts. Workload (incl. contact hours, self-study hours) Total workload:50h Contact hours :30h Private study:20h Credit points 2 ECTS Required and recommended module MAT.1.2 Engineering Mathematic Module objectives/intended learning outcomes This course is concerned with understanding signals of more than one variable and with systems for processing them. The most com- mon examples of these signals include images, video, 3D Content 1. Multi-D Discrete-Time(Space) Signals and Systems 1.1 Representation of Multi-D Signals, Special 2-D Se- quences 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Sig- nals and Systems 1.4 Implementation and Computational Cost 2.5 General Periodic Multi-D Sampling 2.3 General Periodic Multi-D Ensity 2.6 Processing Signals Sampled on Arbitrary Lattices 3.8 Cerangular Sampling 2.7 Multi-D Discrete Fourier Transform (DFT) 3.1 Computable Transform for Multi-D Finite-Length Sig- nals 0. Multi-D Discrete Fourier Transform 3.2 Properties: Periodicity, Discrete Fourier Transform 3.1 Computable Transform for Multi-D Finite-Lengt		
Teaching methods The course consists of lectures accompanied by practical work to consolidate the understanding of the concepts Workload (incl. contact hours, self-study hours) Total workload.50h Contact hours :30h Private study:20h Credit points 2 ECTS Required and recommended prerequisites for joining the module MAT.1.2 Engineering Mathematic precessing them. The most common examples of these signals include images, video, 3D Module objectives/intended learning outcomes This course is concerned with understanding signals of more than one variable and with systems for processing them. The most common examples of these signals include images, video, 3D Content 1. Multi-D Discrete-Time(Space) Signals and Systems 1.1 Representation of Multi-D Signals, Special 2-D Sequences 1.2 Multi-D Linear Shift-Invariant Systems, Discrete Convolution 1.3 Separable Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Sampling 2.3 General Periodic Multi-D Sampling 2.5 Sampling Density, The Nyquist Density 2.6 Processing Signals Sampled on Arbitrary Lattices 0. Multi-D Discrete Fourier Transform for Multi-D Finite-Length Signals 3.2 Properties: Periodicity, Discrete Fourier Transform 3.3 Protentian 3.2 Properties: Periodicity, Discrete Fourier Transform 3.6 Implementation: Diredt, Resence (PCT) 3.4 Circular Convolution 3.5 Millor Devetor-Rack Fast Fourier T	Language	French
Image: Context hours, self-study hours) Total workload:50h contact hours; 30h Private study:20h Credit points 2 ECTS Required and recommended prerequisites for joining the module MAT.1.2 Engineering Mathematic Module objectives/intended learning outcomes This course is concerned with understanding signals of more than one variable and with systems for processing them. The most common examples of these signals include images, video, 3D Content 1. Multi-D Discrete-Time(Space) Signals and Systems 1.1 Representation of Multi-D Signals, Special 2-D Sequences 1.2 Multi-D Linear Shift-Invariant Systems, Discrete Convolution 1.3 Separable Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Signals and Systems 0. Multi-D Linear Shift-Invariant Systems, Discrete Convolution 1.3 Separable Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Signals and Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Signals and Systems 1.4 Implementation and Computational Cost 1.5 Fourier Transform (DFT) 2.2 Rectangular Sampling 2.3 General Periodic Multi-D Sampling 2.4 Propertise: Periodicity, Discrete Fourier Series 3.2 Propertise: Periodicity, Discrete Fourier Series 3.2 Propertise: Periodicity, Discrete	Relation to curriculum	optional
Image: Construct the understanding of the concepts Workload (incl. contact hours, self-study hours) Total workload:50h Contact hours : 30h Private study:20h Credit points 2 ECTS Required and recommended prerequisites for joining the module MAT.1.2 Engineering Mathematic Module objectives/intended learning outcomes This course is concerned with understanding signals of more than one variable and with systems for processing them. The most common examples of these signals include images, video, 3D Content Competencies: C1, C9 Content 1. Multi-D Discrete-Time(Space) Signals and Systems 1.1 Representation of Multi-D Signals, Special 2-D Sequences 1.2 Multi-D Linear Shift-Invariant Systems, Discrete Convolution 1.3 Separable Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Signals and Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Signals and Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Signals and Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Signals and Systems 1.4 Implementation and Computational Cost 1.6 Fourier Representation of Multi-D Discrete-Time Signals 2.2 Rectangular Sampling </td <td></td> <td></td>		
self-study hours) Contact hours :30h Private study:20h Credit points 2 ECTS Required and recommended prerequisites for joining the module MAT.1.2 Engineering Mathematic Module objectives/intended learning outcomes This course is concerned with understanding signals of more than one variable and with systems for processing them. The most com- mon examples of these signals include images, video, 3D Content 1. Multi-D Discrete-Time(Space) Signals and Systems 1.1 Representation of Multi-D Signals, Special 2-D Se- quences 1.2 Multi-D Linear Shift-Invariant Systems, Discrete Con- volution 1.3 Separable Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Sig- nals and Systems 0. Multi-D Sampling 2.1 The Sampling 2.1 The Sampling 2.3 General Periodic Multi-D Sampling 2.4 2-D Hexagonal Sampling 2.5 Sampling Density, The Nyquist Density 2.6 Processing Signals Sampled on Arbitrary Lattices 0. Multi-D Discrete Fourier Transform (DFT) 3.1 Computable Transform (DFT) 3.2 Properties: Periodicity, Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation. Direct, Row-Column Decomposition 3.5 Multi-D Vector-Radix Fast Fourier Transform 3.4 Circular Convolution 3.5 Implementation, DFT-based implementation, Block Processing 3.8 General DFT for Signals Sampled on Arbitrary Lat- tices 3.8 General DFT for Signals Sampled on Arbitrary Lat- tices 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0. Multi-D Finite Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.3 Optimal Least-Squares Designs	Teaching methods	
self-study hours) Contact hours :30h Private study:20h Credit points 2 ECTS Required and recommended prerequisites for joining the module MAT.1.2 Engineering Mathematic Module objectives/intended learning outcomes This course is concerned with understanding signals of more than one variable and with systems for processing them. The most com- mon examples of these signals include images, video, 3D Content 1. Multi-D Discrete-Time(Space) Signals and Systems 1.1 Representation of Multi-D Signals, Special 2-D Se- quences 1.2 Multi-D Linear Shift-Invariant Systems, Discrete Con- volution 1.3 Separable Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Sig- nals and Systems 0. Multi-D Sampling 2.1 The Sampling 2.1 The Sampling 2.3 General Periodic Multi-D Sampling 2.4 2-D Hexagonal Sampling 2.5 Sampling Density, The Nyquist Density 2.6 Processing Signals Sampled on Arbitrary Lattices 0. Multi-D Discrete Fourier Transform (DFT) 3.1 Computable Transform (DFT) 3.2 Properties: Periodicity, Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation. Direct, Row-Column Decomposition 3.5 Multi-D Vector-Radix Fast Fourier Transform 3.4 Circular Convolution 3.5 Implementation, DFT-based implementation, Block Processing 3.8 General DFT for Signals Sampled on Arbitrary Lat- tices 3.8 General DFT for Signals Sampled on Arbitrary Lat- tices 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0. Multi-D Finite Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.3 Optimal Least-Squares Designs	Workload (incl. contact hours	Total workload:50h
Private study:20h Credit points 2 ECTS Required and recommended prerequisites for joining the module MAT.1.2 Engineering Mathematic Module objectives/intended learning outcomes This course is concerned with understanding signals of more than one variable and with systems for processing them. The most com- mon examples of these signals include images, video, 3D Content 1. Multi-D Discrete-Time(Space) Signals and Systems 1.1 Representation of Multi-D Signals, Special 2-D Se- quences 1.2 Multi-D Linear Shift-Invariant Systems, Discrete Con- volution 1.3 Separable Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Sig- nals and Systems 0. Multi-D Sampling 2.1 The Sampling Theorem, Reconstruction 2.2 Rectangular Sampling 2.3 General Periodic Multi-D Sampling 2.4 2-D Hexagonal Sampling 2.5 Sampling Density, The Nyquist Density 2.6 Processing Signals Sampled on Arbitrary Lattices 0. Multi-D Discrete Fourier Transform (DFT) 3.1 Computable Transform for Multi-D Finite-Length Sig- nals 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lat- tices 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0. Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs		
Credit points 2 ECTS Required and recommended prerequisites for joining the module MAT.1.2 Engineering Mathematic Module objectives/intended learning outcomes This course is concerned with understanding signals of more than one variable and with systems for processing them. The most com- mon examples of these signals include images, video, 3D Content 1. Multi-D Discrete-Time(Space) Signals and Systems 1.1 Representation of Multi-D Signals, Special 2-D Se- quences 1.2 Multi-D Linear Shift-Invariant Systems, Discrete Con- volution 1.3 Separable Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Sig- nals and Systems 0. Multi-D Sampling 2.1 The Sampling 2.1 The Sampling 2.3 General Periodic Multi-D Sampling 2.4 2-D Hexagonal Sampling 2.5 Sampling Density, The Nyquist Density 2.6 Processing Signals Sampled on Arbitrary Lattices 0. Multi-D Discrete Fourier Transform (DFT) 3.1 Computable Transform for Multi-D Entite-Length Sig- nals 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation, Direct, Rew-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computable Transform (DCT) and relation to DFT 0. Multi-D Finite-Implementation, DIFT-based implementation, Block Processing 3.8 General DFT for Signals Sampled on Arbitrary Lat- tices 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0. Multi-D Finite Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.3 Optimal Least-Squares Designs 4.3 Optimal Least-Squares Designs	, ,	
Required and recommended prerequisites for joining the module MAT.1.2 Engineering Mathematic Module objectives/intended learning outcomes This course is concerned with understanding signals of more than one variable and with systems for processing them. The most common examples of these signals include images, video, 3D Content 1. Multi-D Discrete-Time(Space) Signals and Systems 1.1 Representation of Multi-D Signals, Special 2-D Sequences 1. Multi-D Linear Shift-Invariant Systems, Discrete Convolution 1.3 Separable Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Signals and Systems 0. Multi-D Sampling 2.1 The Sampling Theorem, Reconstruction 2.2 Rectangular Sampling 2.3 General Periodic Multi-D Sampling 2.4 2-D Hexagonal Sampling 2.4 2-D Hexagonal Sampling 2.5 Sampling Density, The Nyquist Density 2.6 Processing Signals Sampled on Arbitrary Lattices 0. Multi-D Discrete Fourier Transform (DFT) 3.1 Computable Transform (Multi-D Enite-Length Signals 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation. Direct, Rew-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.4 Circular Convolution 3.7 Computable Transform (DCT) and relation to DFT 0. Multi-D Fi	Cradit painta	
prerequisites for joining the module This course is concerned with understanding signals of more than one variable and with systems for processing them. The most com- mon examples of these signals include images, video, 3D Content Competencies: C1, C9 Content 1. Multi-D Discrete-Time(Space) Signals and Systems 1.1 Representation of Multi-D Signals, Special 2-D Se- quences 1.2 Multi-D Linear Shift-Invariant Systems, Discrete Con- volution 1.3 Separable Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Sig- nals and Systems 0. Multi-D Sampling 2.1 The Sampling 2.3 General Periodic Multi-D Sampling 2.4 2-D Hexagonal Sampling 2.5 Sampling Density, The Nyquist Density 2.6 Processing Signals Sampled on Arbitrary Lattices 0. 0. Multi-D Discrete Fourier Transform 3.1 Computable Transform for Multi-D Finite-Length Sig- nals 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation. Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lat- tices 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0. 0. Multi-D Finite Implementation, Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lat- tices 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0. Multi-D Finite Implementation, Dir-based implementation, Block Processing 4.2 Window-based Designs		
module Module objectives/intended learning outcomes This course is concerned with understanding signals of more than one variable and with systems for processing them. The most com- mon examples of these signals include images, video, 3D Content 1. Multi-D Discrete-Time(Space) Signals and Systems 1.1 Representation of Multi-D Signals, Special 2-D Se- quences 1.2 Multi-D Linear Shift-Invariant Systems, Discrete Con- volution 1.3 Separable Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Sig- nals and Systems 0. Multi-D Sampling 2.1 The Sampling Theorem, Reconstruction 2.2 Rectangular Sampling 2.4 2-D Hexagonal Sampling 2.5 Sampling Density, The Nyquist Density 2.6 Processing Signals Sampled on Arbitrary Lattices 0. Multi-D Discrete Fourier Transform 3.2 Properties: Periodicity, Discrete Fourier Stries 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lat- tices 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0. Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lat- tices 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0. Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs		
Module objectives/intended learning outcomes This course is concerned with understanding signals of more than one variable and with systems for processing them. The most com- mon examples of these signals include images, video, 3D Content 1. Multi-D Discrete-Time(Space) Signals and Systems 1.1 Representation of Multi-D Signals, Special 2-D Se- quences 1.2 Multi-D Linear Shift-Invariant Systems, Discrete Con- volution 1.3 Separable Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Sig- nals and Systems 0. Multi-D Sampling 2.1 The Sampling Theorem, Reconstruction 2.2 Rectangular Sampling 2.3 General Periodic Multi-D Sampling 2.4 2-D Hexagonal Sampling 2.5 Sampling Density, The Nyquist Density 2.6 Processing Signals Sampled on Arbitrary Lattices 0. Multi-D Discrete Fourier Transform (DFT) 3.1 Computable Transform for Multi-D Finite-Length Sig- nals 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Latt- tices 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0. Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs		
learning outcomes one variable and with systems for processing them. The most common examples of these signals include images, video, 3D Competencies: C1, C9 Content 1. Multi-D Discrete-Time(Space) Signals and Systems 1.1 Representation of Multi-D Signals, Special 2-D Sequences 1.2 Multi-D Linear Shift-Invariant Systems, Discrete Convolution 1.3 Separable Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Signals and Systems 0. Multi-D Sampling 2.1 The Sampling 2.3 General Periodic Multi-D Sampling 2.4 2-D Hexagonal Sampling 2.4 Sectangular Sampling 2.5 Sampling Density, The Nyquist Density 2.6 Processing Signals Sampled on Arbitrary Lattices 0. Multi-D Sampling 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform (DFT) 3.1 Computable Transform for Multi-D Enrite-Length Signals 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Finite Impluse Response (FIR) Digital Filters 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0. Multi-D Finite Impluse Response (FIR) Digital Filters 4.3 Optimal Least-S		This course is concerned with understanding signals of more than
Content 1. Multi-D Discrete-Time(Space) Signals and Systems 1.1 Representation of Multi-D Signals, Special 2-D Sequences 1.2 Multi-D Linear Shift-Invariant Systems, Discrete Convolution 1.3 Separable Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Signals and Systems 0. Multi-D Sampling 2.1 The Sampling Theorem, Reconstruction 2.2 Rectangular Sampling 2.3 General Periodic Multi-D Sampling 2.4 2-D Hexagonal Sampled on Arbitrary Lattices 0. Multi-D Discrete Fourier Transform (DFT) 3.1 Computable Transform for Multi-D Finite-Length Signals 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lattices 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0. Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrain		one variable and with systems for processing them. The most com-
Content 1. Multi-D Discrete-Time(Space) Signals and Systems 1.1 Representation of Multi-D Signals, Special 2-D Sequences 1.2 Multi-D Linear Shift-Invariant Systems, Discrete Convolution 1.3 Separable Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Signals and Systems 0. Multi-D Sampling 2.1 The Sampling Theorem, Reconstruction 2.2 Rectangular Sampling 2.3 General Periodic Multi-D Sampling 2.4 2-D Hexagonal Sampled on Arbitrary Lattices 0. Multi-D Discrete Fourier Transform (DFT) 3.1 Computable Transform for Multi-D Finite-Length Signals 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lattices 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0. Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrain		Competencies: C1. C0.
 Multi-D Discrete-Time(Space) Signals and Systems Representation of Multi-D Signals, Special 2-D Sequences 2 Multi-D Linear Shift-Invariant Systems, Discrete Convolution 3 Separable Systems 4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Signals and Systems Multi-D Sampling 2.1 The Sampling Theorem, Reconstruction 2.2 Rectangular Sampling 2.3 General Periodic Multi-D Sampling 2.4 2-D Hexagonal Sampled on Arbitrary Lattices Multi-D Correte Fourier Transform (DFT) 3.1 Computable Transform for Multi-D Finite-Length Signals 2.2 Properties: Periodicity, Discrete Fourier Series 3.2 Properties: Periodicity, Discrete Fourier Series 3.2 Fromplemation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lattices 3.9 Discrete Cosine Transform (DCT) and relation to DFT Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs 	Content	
1.1 Representation of Multi-D Signals, Special 2-D Sequences 1.2 Multi-D Linear Shift-Invariant Systems, Discrete Convolution 1.3 Separable Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Signals and Systems 0. Multi-D Sampling 2.1 The Sampling Theorem, Reconstruction 2.2 Rectangular Sampling 2.3 General Periodic Multi-D Sampling 2.4 2-D Hexagonal Sampling 2.5 Sampling Density, The Nyquist Density 2.6 Processing Signals Sampled on Arbitrary Lattices 0. Multi-D Discrete Fourier Transform (DFT) 3.1 Computable Transform for Multi-D Finite-Length Signals 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lattices 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0. Multi-D Finite Impulse Response (FIR) Digital Filters 3.1 Direct Implementation, DFT-based implementation, Block Processing 4.3 Optimal Least-Squares Designs 4.3 Optim	Content	1 Multi-D Discrete-Time(Space) Signals and Systems
quences 1.2 Multi-D Linear Shift-Invariant Systems, Discrete Convolution 1.3 Separable Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Signals and Systems 0. Multi-D Sampling 2.1 The Sampling Theorem, Reconstruction 2.2 Rectangular Sampling 2.3 General Periodic Multi-D Sampling 2.4 2-D Hexagonal Sampling 2.5 Sampling Density, The Nyquist Density 2.6 Processing Signals Sampled on Arbitrary Lattices 0. Multi-D Discrete Fourier Transform (DFT) 3.1 Computable Transform for Multi-D Finite-Length Signals 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lattices 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0. Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.3 Optimal Least-Squares Designs 4.3 Optimal Least-Squares Designs		
1.2 Multi-D Linear Shift-Invariant Systems, Discrete Convolution 1.3 Separable Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Signals and Systems 0. Multi-D Sampling 2.1 The Sampling Theorem, Reconstruction 2.2 Rectangular Sampling 2.3 General Periodic Multi-D Sampling 2.4 2-D Hexagonal Sampling 2.5 Sampling Density, The Nyquist Density 2.6 Processing Signals Sampled on Arbitrary Lattices 0. Multi-D Discrete Fourier Transform (DFT) 3.1 Computable Transform for Multi-D Finite-Length Signals 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computable Transform (DCT) and relation to DFT 0. Multi-D Finite Impulse Response (FIR) Digital Filters 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0. Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Optimal Least-Squares Designs 4.3 Optimal Least-Squares Designs		
volution 1.3 Separable Systems 1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Signals and Systems 0. Multi-D Sampling 2.1 The Sampling Theorem, Reconstruction 2.2 Rectangular Sampling 2.3 General Periodic Multi-D Sampling 2.4 2-D Hexagonal Sampling 2.5 Sampling Density, The Nyquist Density 2.6 Processing Signals Sampled on Arbitrary Lattices 0. Multi-D Discrete Fourier Transform (DFT) 3.1 Computable Transform for Multi-D Finite-Length Signals 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lattices 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0. Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.3 Optimal Least-Squares Designs 4.3 Optimal Least-Squares Designs		
1.4 Implementation and Computational Cost 1.5 Fourier Representation of Multi-D Discrete-Time Signals and Systems 0. Multi-D Sampling 2.1 The Sampling Theorem, Reconstruction 2.2 Rectangular Sampling 2.3 General Periodic Multi-D Sampling 2.4 2-D Hexagonal Sampling 2.5 Sampling Density, The Nyquist Density 2.6 Processing Signals Sampled on Arbitrary Lattices 0. Multi-D Discrete Fourier Transform (DFT) 3.1 Computable Transform for Multi-D Finite-Length Signals 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lattices 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0. Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs		
 I.5 Fourier Representation of Multi-D Discrete-Time Signals and Systems Multi-D Sampling 2.1 The Sampling Theorem, Reconstruction 2.2 Rectangular Sampling 2.3 General Periodic Multi-D Sampling 2.4 2-D Hexagonal Sampling 2.5 Sampling Density, The Nyquist Density 2.6 Processing Signals Sampled on Arbitrary Lattices Multi-D Discrete Fourier Transform (DFT) 3.1 Computable Transform for Multi-D Finite-Length Signals 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lattices 3.9 Discrete Cosine Transform (DCT) and relation to DFT Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs 		1.3 Separable Systems
 nals and Systems Multi-D Sampling 2.1 The Sampling Theorem, Reconstruction 2.2 Rectangular Sampling 2.3 General Periodic Multi-D Sampling 2.4 2-D Hexagonal Sampling 2.5 Sampling Density, The Nyquist Density 2.6 Processing Signals Sampled on Arbitrary Lattices Multi-D Discrete Fourier Transform (DFT) 3.1 Computable Transform for Multi-D Finite-Length Signals 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lattices 3.9 Discrete Cosine Transform (DCT) and relation to DFT Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs 		1.4 Implementation and Computational Cost
0. Multi-D Sampling 2.1 The Sampling Theorem, Reconstruction 2.2 Rectangular Sampling 2.3 General Periodic Multi-D Sampling 2.4 2-D Hexagonal Sampling 2.5 Sampling Density, The Nyquist Density 2.6 Processing Signals Sampled on Arbitrary Lattices 0. Multi-D Discrete Fourier Transform (DFT) 3.1 Computable Transform for Multi-D Finite-Length Signals 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lattices 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0. Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.3 Optimal Constrained Designs		I.5 Fourier Representation of Multi-D Discrete-Time Sig-
 2.1 The Sampling Theorem, Reconstruction 2.2 Rectangular Sampling 2.3 General Periodic Multi-D Sampling 2.4 2-D Hexagonal Sampling 2.5 Sampling Density, The Nyquist Density 2.6 Processing Signals Sampled on Arbitrary Lattices 0. Multi-D Discrete Fourier Transform (DFT) 3.1 Computable Transform for Multi-D Finite-Length Signals 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lattices 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0. Multi-D Finite Impluse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs 		
 2.2 Rectangular Sampling 2.3 General Periodic Multi-D Sampling 2.4 2-D Hexagonal Sampling 2.5 Sampling Density, The Nyquist Density 2.6 Processing Signals Sampled on Arbitrary Lattices 0. Multi-D Discrete Fourier Transform (DFT) 3.1 Computable Transform for Multi-D Finite-Length Signals 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lattices 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0. Multi-D Finite Impluse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs 		
 2.3 General Periodic Multi-D Sampling 2.4 2-D Hexagonal Sampling 2.5 Sampling Density, The Nyquist Density 2.6 Processing Signals Sampled on Arbitrary Lattices Multi-D Discrete Fourier Transform (DFT) 3.1 Computable Transform for Multi-D Finite-Length Signals 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lattices 3.9 Discrete Cosine Transform (DCT) and relation to DFT Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs 		
 2.4 2-D Hexagonal Sampling 2.5 Sampling Density, The Nyquist Density 2.6 Processing Signals Sampled on Arbitrary Lattices Multi-D Discrete Fourier Transform (DFT) 3.1 Computable Transform for Multi-D Finite-Length Signals 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lattices 3.9 Discrete Cosine Transform (DCT) and relation to DFT Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs 		
 2.5 Sampling Density, The Nyquist Density 2.6 Processing Signals Sampled on Arbitrary Lattices Multi-D Discrete Fourier Transform (DFT) 3.1 Computable Transform for Multi-D Finite-Length Signals 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lattices 3.9 Discrete Cosine Transform (DCT) and relation to DFT Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs 		
 2.6 Processing Signals Sampled on Arbitrary Lattices Multi-D Discrete Fourier Transform (DFT) 3.1 Computable Transform for Multi-D Finite-Length Signals 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lattices 3.9 Discrete Cosine Transform (DCT) and relation to DFT Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs 		
0. Multi-D Discrete Fourier Transform (DFT) 3.1 Computable Transform for Multi-D Finite-Length Signals 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lattices 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0. Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs		
 3.1 Computable Transform for Multi-D Finite-Length Signals 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lattices 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0. Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs 		
 nals 3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lattices 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0. Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs 		
3.2 Properties: Periodicity, Discrete Fourier Series 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lat- tices 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0.0.Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs		
 3.3 Rectangular Discrete Fourier Transform 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lattices 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0. Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs 		
 3.4 Circular Convolution 3.5 Implementation: Direct, Row-Column Decomposition 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lattices 3.9 Discrete Cosine Transform (DCT) and relation to DFT 0. Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs 		
 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lat- tices 3.9 Discrete Cosine Transform (DCT) and relation to DFT Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs 		-
 3.6 Multi-D Vector-Radix Fast Fourier Transform 3.7 Computational Complexity and Storage Issues 3.8 General DFT for Signals Sampled on Arbitrary Lat- tices 3.9 Discrete Cosine Transform (DCT) and relation to DFT Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs 		
 3.8 General DFT for Signals Sampled on Arbitrary Lattices 3.9 Discrete Cosine Transform (DCT) and relation to DFT Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs 		
 3.8 General DFT for Signals Sampled on Arbitrary Lattices 3.9 Discrete Cosine Transform (DCT) and relation to DFT Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs 		
 3.9 Discrete Cosine Transform (DCT) and relation to DFT Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs 		- · · · ·
 Multi-D Finite Impulse Response (FIR) Digital Filters 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs 		
 4.1 Direct Implementation, DFT-based implementation, Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs 		
Block Processing 4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs		
4.2 Window-based Designs 4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs		
4.3 Optimal Least-Squares Designs 4.4 Optimal Constrained Designs		
4.4 Optimal Constrained Designs		
4.5 Fast Design and Realization Using Transformations		
		4.5 Fast Design and Realization Using Transformations

	 Multi-D Infinite Impulse Response (IIR) Digital Filters 5.1 Two-D Difference Equations, Recursive Computability 5.2 Z-Transform: Definition, Region of Convergence, Properties 5.3 System Functions, Stability Analysis 5.4 Implementation: Recursive, Iterative Processing of Propagating Space-Time Signals 1 Space-Time Signals, Plane Waves 2 Space-Time Filtering 3 Array Processing, Beamforming 4 Weighted Delay and Sum Beamformer 5 Seismic Migration, Geophysical Processing Multi-D Signal Restoration and Reconstruction Reconstruction from Projections, Back-Projection Algorithm 2 Reconstruction from Phase or Magnitude
Examination forms	100% Final exam
Study and examination require- ments	10/20
Reading list	 Dudgeon, D. E., & Mersereau, R. M. (1984). Multidimensional digital signal processing. Prentice Hall. Gonzales, R. C., & Woods, R. E. (1992). Digital image processing. Addison & Wesley. Jain, A. K. (1989). Fundamentals of digital image processing. Prentice Hall. Russ, J. C. (1992). The image processing handbook. CRC.

CV.5.9 Computer Vision

Madula designation	CV/E 0 Computer Vision
Module designation Semester(s) in whichthemodu-	CV.5.9 Computer Vision S5
leistaught	
Person responsible for themod-	Slim MHIRI
ule (coordinator)	Farmel
Language Relation tocurriculum	French
Relation tocumculum	optional
Teaching methods	The course consists of lectures accompanied by practical work to consolidate the understanding of theconcepts
Workload (incl. contacthours, self-studyhours)	Total workload:50h Contact hours :30h Private study:20h
Creditpoints	2 ECTS
Required and recommended prerequisites for joining the module	Geometry, image processing
Module objectives/intended	Master the fundamental tools of computer vision; design and im-
learning outcomes	plement solutions to
	different problems related to three-dimensional reconstruction; make a simple application. Competencies: C1, C9
Content	1. Introduction
	2. Image formation
	Reminders; Landmarks; Relevant phenomena: geometric, op-
	tical, digital; Camera parameters: extrinsic, intrinsic.
	3. Projective geometry
	Projective plane: homogeneous representation, line, points,
	intersection of 2 lines, ideal point, line at infinity, duality, con- ics; projective transformations: projectivity, transformations of
	lines and conics, hierarchy of transformations; apps
	4. Calibration
	Parameter estimation: with model: without and with radial de-
	formation; Tsai's method, without model
	5. Stereovision – spatial shifts
	Basic principles; matching; modelingoftherelationship- betweenextrinsicparametersandepipolargeometry: essential
	betweenextrinsicparametersandepipolargeometry: essential and fundamental matrices; peripolar geometry; image rectifi-
	cation: algorithm, reverse rectification, polar approach, projec-
	tive approach; constraints of a stereovision system
	6. Registration
	Correlation, hierarchical MC, by RANSAC, by dynamic pro-
	gramming, by phase shift, MC active
	 3D reconstruction by stereovision Triangulation: parallel system, convergent system without
	and with error; reconstruction to within a scale factor; recon-
	struction at a near projective transformation
Examination forms	100% Final exam
Study and examination require-	100% Final exam 10/20
ments	
Reading list	Shapiro, L., & Stockman, G. (2001). Computer Vision. Pren-
	tice Hall, Upper Saddle River, NJ.
	Trucco, E., & Verri, A. (1998). Introductory Techniques for 3- D Computer Vision. Prentice Hall.

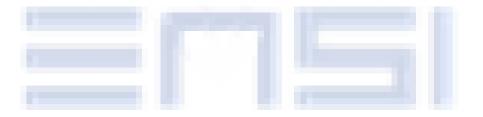
Ballard, D. H., & Brown, C. M. (1982). Computer Vision. Prentice Hall, Englewood Cliffs, NJ. ISBN 0-13-165316-4
Baxes, G. A. (1994). Digital Image Processing: Principles and Applications. John Wiley & Sons, New York; Toronto. ISBN 0471009490
Castleman, K. R. (1996). Digital Image Processing. Prentice Hall.
de Berg, M., van Kreveld, M., Overmars, M., & Schwarzkopf, O. (2000). Computational Geometry: Algorithms and Applica- tions (2nd ed.). Springer-Verlag, Berlin, Germany.

ISA.5.1	Big data
---------	-----------------

Module designation	ISA.5.1 Big data	
Semester(s) in which the mod-	S5	
ule is taught		
Person responsible for the mod-	Raoudha Chebil	
ule (coordinator)		
Language	French	
Relation to curriculum	Compulsory	
Teaching methods	lesson, lab works, presentations. Total workload: 50h	
Workload (incl. contact hours,		
self-study hours)	Contact hours: 30h (20h lessons + 10h lab works)	
	Private study: 20h	
One dit a sinte		
Credit points	2 ECTS	
Required and recommended	Basic knowledge in programming (Python and Java) and relational	
prerequisites for joining the	databases	
module		
Module objectives/intended	Knowledge: Students:	
learning outcomes	-Master the basic building blocks of the Hadoop platform, namely	
	HDFS and MapReduce, and have an idea of the components of its	
	ecosystem;	
	-Master the MapReduce approach for problem solving;	
	-Understand the limits of the relational model and know the differ-	
	ent models of NOSQL databases.	
	Competencies: C4, C7, C8	
Content	Chapter I – Introduction to Big Data	
	1. Motivations	
	2. Definition	
	3. The 3Vs and the additional Vs	
	4. Benefits and challenges	
	5. Application examples	
	6. Stages of a Big Data project	
	7. New professions	
	8. Related fields	
	Chapter II – Hadoop: Building Blocks	
	1. Hadoop presentation	
	2. Hadoop history	
	3. Hadoop ecosystem	
	4. HDFS	
	5. MapReduce V1	
	6. MapReduce V2	
	7. Design Patterns MapReduce	
	Chapter III - Advanced Processing Tools	
	1. Data processing types	
	2. MapReduce review	
	3. Abstraction languages	
	a. Pig	

	 4. Apache Spark Chapter IV – NOSQL Databases 1. DBMS strengths 2. DBMS limits 3. BD NOSQL 4. BDR vs BD NOSQL 5. Study of BD NOSQL instances a. Cassandra b. MongoDB Chapter V – Big Data Architectures 1. Motivations 2. Lambda architecture 3. Kappa architecture 4. Other architectures 5. Case study Practical Works 1. Installation and testing of the working environment 2. HDFS 3. MapReduce 4. Pig and Hive 5. Spark 6. HBase
Examination forms Study and examination require-	35% continuous evaluation (Lab works, presentations) ; 65% written exam10/20
ments Reading list	Mooc
	 "Fundamentals for Big Data", Télécom ParisTech "Introduction to Hadoop and MapReduce", University Nice Sophia Antipolis Books Marr, B. (2015). Big Data: Using SMART big data, analytics and metrics to make better decisions and improve performance. John Wiley & Sons. Zikopoulos, P., Eaton, C., et al. (2011). Understanding big data: Analytics for enterprise class Hadoop and streaming data. McGraw-Hill Osborne Media.
	Nerzic, P. (2016). Hadoop tools for Big Data. Rennes1 University, France.

AI.5.13 Machine and Deep Learning Workshops

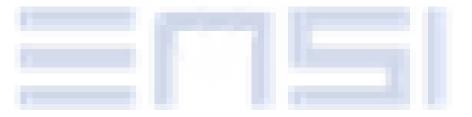

Module designation	AI.5.13 Machine and Deep Learning Workshops
Semester(s) in which the mod-	S5
ule is taught	
Person responsible for the mod-	Faouzi Ghorbel
ule (coordinator)	
Language	French
Relation to curriculum	optional
Teaching methods	lesson, lab works.
Workload (incl. contact hours,	Total workload:25h
self-study hours)	Contact hours :15h
	Private study:10h
Credit points	1 ECTS
Required and recommended	Machine Learning & Deep Learning
prerequisites for joining the	 Basic Programming Skills (Matlab and Python)
module	
Module objectives/intended	Students are able to:
learning outcomes	 Know and understand the main architectures of neural net- works, as well as their use in different assessing.
	works, as well as their use in different scenarios.
	Effectively manipulate a framework for Deep Learning.
	 Know the good practices around the resolution of Deep Learning problems, both on the optimization of the models
	and on their deployment in production.
	Competencies: C1, C2, C3, C4
Content	Workshop 1: Introduction to TensorFlow, Keras & PyTorch
	Main notions in these frameworks
	 Performance, usage, popularity.
	 Criteria for choosing a framework for a given task.
	Workshop 2: One-layer fully connected network
	PrincipleUnderstanding in simple cases
	Learning a simple curve
	Learning on black and white images
	Learning a probability distribution by maximizing likelihood
	Interpretation of learned weights
	Adding Layers
	Compromise number of neurons / number of layers
	Initialization of network weights
	Workshop 3: CONVOLUTIONAL NEURON NETWORKS (CNN)
	Convolution: Intuition
	Convolution: interpretations
	• Exact operation performed by a convolutional filter in the different
	frameworks
	The various convolutional filters and options (strides, layers, etc.)
	• Effect of pooling: what do we get between the intermediate lay-
	ers?
	Workshop 3: CONVOLUTIONAL NEURON NETWORKS FOR IMAGES
	Convolution & 2D Pooling
	• Transfer Learning: make only part of the network learn.
	1D convolutions for sound and sequences
	Convolution & 1D Pooling
	Interest and limitations
110	Pof ID 220.01

	Workshop 4: RECURRENT NEURON NETWORKS (RNN)
	Principles of RNN and different associated layers
	• Why do we need RNN?
	Simple recurrent neural network
	Long-Short Term Memory (LSTM) & Gated Recurrent Unit (GRU)
	Textual data processing Text vectorization
	Embedding Apps
	 Apps Classification of a sequence
	Text generation
	Advanced Uses of RNNs
	Stacking of RNN layers
	Bi-directional RNN
	Combination with convolutional layers
	Combination with convolutional layers
	Workshop 5: ADVANCED ARCHITECTURES OF NEURON
	 Interest and uses of auto-encoders
	Examples of use
	Information compression
	Anomaly detection
	Feature extraction
	Generating data with Generative Adversarial Networks (GANs)
	Principle
	Generation of image samples according to a probability distribu-
	tion
	Existing variants of GANs
Examination forms	100% Final exam
Study and examination require- ments	10/20
Reading list	Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning. New York: Springer.
	Murphy, K. P. (2012). Machine learning: A probabilistic perspec- tive. MIT Press.
	Chalau Churata C. & Dan David C. (2244) Herberton II
	Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding ma-
	chine learning: From theory to algorithms. Cambridge University Press.
	Nieleen M. A. (2015). Neurol networks and door looming. On
	Nielsen, M. A. (2015). Neural networks and deep learning. San
	Francisco, CA, USA: Determination Press.
	Hastie, T., Tibshirani, R., Friedman, J. H., et al. (2009). The ele- ments of statistical learning: Data mining, inference, and predic-
	tion. New York: Springer.

AI.5.14 Speech Recognition & chatbots Application

^	CV 5 14 Speech Becognition Chathete Application
Module designation Semester(s) in which the mod-	CV.5.14 Speech Recognition&Chatbots Application S5
ule is taught	
Person responsible for the mod-	Faouzi Ghorbel
ule (coordinator)	
Language	French
Relation to curriculum	optional
Teeching weathede	Active engranch (by problems and projects)
Teaching methods	Active approach (by problems and projects) Project integrated to the course "creation of an intelligent chatbot"
	+ practical work
Workload (incl. contact hours,	Total workload:25h
self-study hours)	Contact hours :15h
	Private study:10h
Credit points	1 ECTS
Required and recommended	- Signal processing
prerequisites for joining the	- Foundations of Machine Learning, Linear Algebra
module	- Python for Machine Learning
	- Python for Deep Learning
Module objectives/intended	This course aims to:
learning outcomes	- provide an overview of modern optimization meth-
3	ods for applications in machine learning and data
	science.
	- present, in particular, the framework and the theo-
	retical and practical foundations of speech recogni-
	tion
	Competencies: C1, C9
Content	Chapter 1 : Introduction to automatic speech recognition
	1.1 Uses of automatic speech recognition
	1.2The progress of the field over time
	1.3 Challenges Chapter 2 : Overview of automatic speech recognition applica-
	tions
	2.1 Subtitling and automatic video translation
	2.2 Indexing and information extraction in audiovisual doc-
	uments
	2.3 Human-computer voice interfaces.
	2.4 Geolocation and mapping Chapter 3: Architecture of an Automatic Speech Recognition Sys-
	tem
	3.1 Acoustic model,
	3.2 Language model
	3.3 Pronunciation model
	3.4 Decoder
	4: Methods and metrics for evaluating automatic speech recogni- tion systems
	5: "Chatbots" project:
	Project progress:
	-Identification of the mission
	-Identification of the context
	-Setting up the scenario and the dialogic sequences
	-Development of the chatbot: from a chatbot creation platform such as AWS
Examination forms	100% Final exam
Study and examination require-	10/20
ments	
Reading list	Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Batten-
101	berg, E., Case, C., Casper, J., et al. (2016). Deep speech 2: End-

to-end speech recognition in English and Mandarin. In Interna- tional Conference on Machine Learning (pp. 173-182).
Church, K. (2003). Speech and language processing: Where have we been and where are we going? Eurospeech'2003.
Davidson, T., Bhattacharya, D., & Weber, I. (2019). Racial bias in hate speech and abusive language detection datasets. Third Workshop on Abusive Language Online.
Hannun, A., et al. (2014). Deep speech: Scaling up end-to-end speech recognition. arXiv preprint arXiv:1412.5567.
Hannun, A., Lee, A., Xu, Q., & Collobert, R. (2019). Sequence-to- sequence speech recognition with time-depth separable convolu- tions. arXiv preprint arXiv:1904.02619.

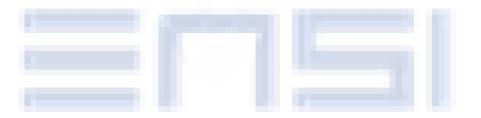


AI.5.15 Optimisation and Reinforcement Learning

Module designation	AI.5.15 Optimisation and Reinforcement Learning	
Semester(s) in which the mod- ule is taught	S5	
Person responsible for the mod- ule (coordinator)	Faouzi Ghorbel	
Language	French	
Relation to curriculum	optional	
Teaching methods	Active approach (by problems and projects)	
Workload (incl. contact hours, self-study hours)	Total workload:25h Contact hours :15h Private study:10h	
Credit points	1 ECTS	
Required and recommended prerequisites for joining the module	 Cloud. Basic knowledge of Data Science/Machine Learning (statistics, algorithms). Basic knowledge of Linux, network, Python, bash. 	
Module objectives/intended learning outcomes	 This course aims to: -provide an overview of modern optimization methods for applications in machine learning and data science. -discuss in theory and practice the scalability of algorithms to large data sets. -provides an introduction to the main models of reinforcement learning and its use in the optimization of machine learning (ML) and deep learning (DL) algorithms. Keywords: Deep learning, artificial neural networks, reinforcement learning, TD learning, SARSA 	
Content	Competencies: C1, C2, C3, C4 Part 1: 1. General introduction to Reinforcement Learning 2. Markov decision processes and dynamic programming 3. Reinforcement learning algorithms: Introduction to stochastic approximation, TD(λ) and Q-learning algorithms 4. Dynamic programming with approximation: analysis in L∞ norm, Iteration on values with approximation, Iteration on policies with approximation, Minimization of Bellman residual, Analysis of some algorithms: LSTD, Bellman residual, LSPI, Fitted Q-iterations, Extension to analysis in Lp norm Part 2 5. variants of SARSA, Q-learning, n-step-TD learning 6. Political Gradient 7. Deep learning by reinforcement • Exploration • Actor-Critic networks • Atari games and robotics • Board games and planning • sequences, recurrent networks, partial observability	

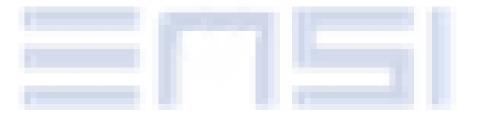
Γ

Examination forms	100% Final exam
Study and examination require- ments	10/20
	Espinasse, B., & Bellot, P. (2017). Introduction to Big-Data: Opportunity, storage and analysis of megadata. Dossiers Techniques de l'Ingénieur (DTI), Ref. H6040.
	Duchateau, F. (2014). Les SGBD Non-relationnels. Univ. Lyon 1.
	Chokogoue, J. (2017). Hadoop: Become operational in the world of Big Data (1st edition). ENI.
	Karau, H., Konwinski, A., Wendell, P., Zaharia, M. (2015). Learn- ing Spark Lightning-Fast Big Data Analysis. O'Reilly Media.
Reading list	Delort, P. (2015). Le Big Data. Presses Universitaires de France.
	Lemberger, P., Batty, M., Morel, M., Raffeëlli, J. L. (2015). Big Data and Machine Learning. Dunod.
	Lacomme, P., Aridhi, S., Phan, R. (2014). Bases de données NoSQL et Big Data. Ellipses.
	Bruchez, R. (2013). Bases de données NoSQL. Ellipses.
	Bruchez, R. (2015). NoSQL databases and Big Data: Understand- ing and implementing. Eyrolles Publisher.


AI.5.16 Introduction to Natural Language Processing

Module designation	AI.5.16 Introduction to Natural Language Processing (NLP)	
Semester(s) in which the mod- ule is taught	S5	
Person responsible for the mod- ule (coordinator)	Chiraz Ben Othmane Zribi	
Language	French	
Relation to curriculum	Optional	
Teaching methods	e.g. lecture, lab works, project	
Workload (incl. contact hours, self-study hours)	Total workload:25h Contact hours :15h Private study:10h	
Credit points	1 ECTS	
Required and recommended prerequisites for joining the module	Students should have basic knowledge on programming with Py- thon	
Module objectives/intended learning outcomes	This course introduces the fundamental concepts and techniques of NLP by presenting the different levels of processing and giving a relatively broad overview of the the commonly used algorithms and tools. Objectives : Students will gain an in-depth understanding of the computational properties of natural languages and the commonly used algorithms	
	for processing linguistic information. Learning Outcomes: The students will be able to:	
	 Understand key concepts from NLP those are used to describe and analyze language Understand POS tagging and context free grammar for Natural language 	
	- Understand semantic representation of Englisfh Natural lan- guage for processing	
	Learning outcomes: C1, C8, C9 and C13	
Content	 Introduction Overview of course content Motivations and challenges of TAL Examples of applications Levels of analysis (oral and written) Types of problems to solve Approaches and techniques for NLP 	
	 Illustrative exercise 2. Morphological analysis Presentation of the morphology (flexion, derivation) 	
	 Representation of morphology by lexical lists Representation of morphology by finite state automata 	
	 Representation of morphology by automata with transducers Morpho-synatxic labeling / POS-tagging Definitions (morpho-synatxic labeling, label games,) 	
	 Rule-based taggers (Example: Brill's taggerà Probabilistic taggers (NGrams, based on hidden Markov chains) Syntactic analysis and formal grammars 	
	- General presentation of syntactic analysis - Formal grammar: definition and types	
	 Context free grammar for NLP Syntax analysis with a context free grammar Common parsing algorithms (CYK, Earley) 	
	 5. Processing semantics - General presentation of the semantics - Types of semantic relationships between words 	

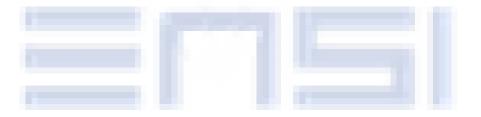
	 Semantic similarity between words based on a thesaurus Semantic similarity between words based on context Semantic vectors and construction methods (LSA, Word2Vec) Applications of NLP Spell-checking, Summarization, Question-Answering, improving user queries, Machine Translation– Overview.
Examination forms	Project
Study and examination require- ments	10/20
Reading list	 Gunning, D. S. G. (2019). Natural Language Processing Fundamentals. Packt Publishing. Indurkhya, N., & Damerau, F. J. (2010). Handbook of Nat- ural Language Processing. Jurafsky, D., & Martin, J. H. (2000). Speech and Language Processing. Gelbukh, A. (2008). Computational Linguistics and Intelli- gent Text Processing.



CV.5.11 Medical Imaging Workshops

Module designation	CV.5.11 Medical Imaging Workshops	
Semester(s) in which the mod-	S5	
ule is taught		
Person responsible for the mod- ule (coordinator)	Slim Mhiri	
Language	French	
Relation to curriculum	optional	
Teaching methods	Active approach (by problems and projects)	
Workload (incl. contact hours,	Total workload:25h	
self-study hours)	Contact hours :15h Private study:10h	
Credit points Required and recommended	1 ECTS -Image processing	
prerequisites for joining the	-3D	
module	-Engineering mathematics.	
Module objectives/intended	This course aims to:	
learning outcomes	 introduce the specificities of medical images through their different acquisition methods, each time evoking the object 	
	and the different stages of their processing and the main	
	problems encountered.	
	 study the specificities of the different modalities. 	
	Learning outcomes: C1, C9	
Content	Through workshops; This module addresses the following ques-	
	tions:	
	Part 1. Introduction of the Image in medicine	
	 Clinical use of images Needs of the medical community 	
	 Pathologies in the image 	
	 Purpose of medical image processing 	
	Terms of acquisition	
	Part 2 Modalities	
	 Ultrasound imaging (ultrasound) 	
	• 3D ultrasound	
	• X-ray	
	 X-ray scanner (Computed tomography) CT imaging and artifacts 	
	 Nuclear magnetic resonance imaging (MRI) 	
	 PET-MRI complementarity 	
	Functional MRI	
	X-ray angiography	
	CT angiography	
	MRI angiography	
	Part 3.The main processing of medical images	
	 Segmentation Visualization 	
	Image merging	
	 Shape analysis 	
	Building Atlas	
	Image series analysis	
	Movement analysis	
	Simulation	
	Computer-assisted surgery	
Examination forms	100% Final exam	

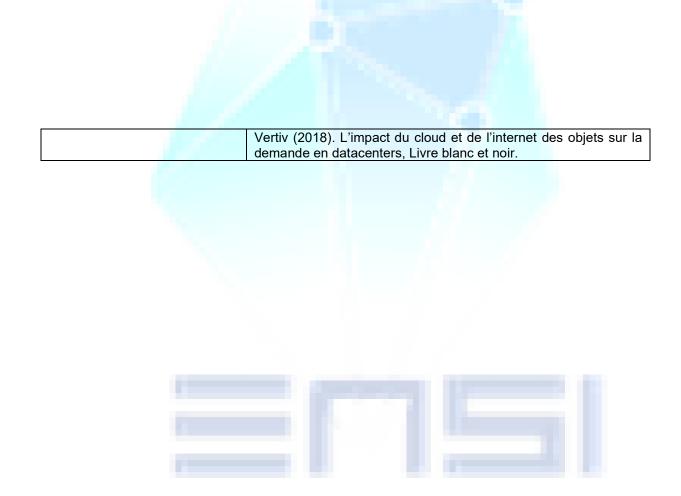
Study and examination require-	10/20
ments	
Reading list	Farncombe, T., & Iniewski, K. (Eds.). (2017). Medical imaging:
	Technology and applications. CRC Press.


SEC.5.3 Blockchain

SEC.5.5 DIUCKCHAIH		
Module designation	SEC.5.3 Blockchain	
Semester(s) in which	S5	
the module is taught		
Person responsible for	Mohamed Houcine Hdhili, Hanen Idoudi	
the module		
Teachers team	Hanen Idoudi	
Language	French	
Relation to curriculum	Optional	
Teaching methods	Lesson, Lab works	
Workload (incl. contact	Total workload:25h	
hours, self-study hours)	Contact hours :15h (9h lessons, 6h lab works)	
	Private study:10h	
Credit points	1 ECTS	
Required and recom-	SEC.4.1 Cybersecurity and Cryptography	
mended prerequisites		
for joining the module		
Module objectives/in-	Knowledge:	
tended learning out-	After completing this course, students should be able to:	
comes	• Explain blockchain and how it is applied across industries.	
	Describe key principles of blockchain technology and the benefits and	
	value that they bring to enterprises.	
	• Explain the role of a shared ledger.	
	• Explain fundamental concepts in Hyperledger Fabric.	
	• Describe the elements of a business network, the role of channels, and	
	how the world state is maintained.	
	Develop, test, debug, and deploy chaincode with IBM Blockchain Plat-	
	form Extension for Visual Studio Code	
	• Apply concepts of blockchain security, identity and access control, and	
	data privacy to blockchain solutions.	
	• Write applications that interact with a blockchain network.	
	• Describe patterns, best practices, and reference architectures for inte-	
	gration from enterprise applications to blockchain networks.	
	Competencies: C6, C13	
	Competencies. Co, C13	
Content		
	Unit 1. Blockchain overview	
	Unit 2. Introduction to chaincode development	
	Unit 3. Chaincode query methods	
	Unit 4. Best practices for writing, testing, and debugging chaincode	
	Unit 5. Identity and access control	
	Unit 6. Data privacy	
	Unit 7. Basics of application development	
	Unit 8. Blockchain integration and advanced application development	
Examination forms	100% written exam	
Study and examination	10/20	
requirements		
Reading list	IBM Blockchain Developer – Official course material	

DOS.5.3 IoT

D03.3.3 101		
Module designation	DOS.5.3 – IoT	
Semester(s) in which the mod- ule is taught	S5	
Person responsible for the mod- ule (coordinator)	Hanen Idoudi	
Language	French	
Relation to curriculum	optional	
Teaching methods	lecture, project	
Workload (incl. contact hours, self-study hours)	Total workload:25h Contact hours :15h Private study:10h	
Credit points	1 ECTS	
Required and recommended prerequisites for joining the module	Existing competences in networking	
Module objectives/intended learning outcomes	 The purpose of this course is to study the fundamental concepts of Internet of Things. At the end of the course, the students will be able: 1. Understand the basic concepts of Internet of Things (IoT) 2. Identify the main components of the IoT ecosystem 3. Explore the major applications in IoT 4. Understand the architecture and protocol stack proposed for IoT 5. Set up the specific requirements to design the logic and network architectures of an IoT application Competencies: C2, C3, C9 	
Content	Chapter I – Introduction to the Internet of Things - The inception of IoT - Basic concepts : smart objects, global connectiv- ity, sensors, etc. - IoT Ecosystem - IoT challenges Chapter II – IoT Applications and architectures - IoT Applications - IoT architecture layers - Connectivity models in IoT Chapter III – Networks technologies in IoT - IoT networks technologies classification - Long range communication networks overview - Short range communication networks overview	
	Chapter IV – Middelwares and Application protocols for IoT	


	 Web of Things: concepts and communication's models WoT : Data Standards IoT middelwares Publish/subscribe model WoT : Data exchange protocols MQTT CoAP Practical Work (personal project) : Design of a simple IoT application
Examination forms	Oral presentation of the personal project.
Study and examination require- ments	To acquire at least 10/20 in the oral of the personal project
Reading list	Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ay- yash, M. (January 2015). Internet of Things: A Survey on Enabling Technologies, Protocols and Applications. IEEE Communications Surveys & Tutorials.

DOS.5.8 Introduction to cloud computing

Module designation	DOS.5.8: Introduction to Cloud Computing	
Semester(s) in which the mod-	S5	
ule is taught		
Person responsible for the mod-	Dr. Mehrez Essafi	
ule (coordinator)		
Teaching team	-	
Language	French	
Relation to curriculum	Optional	
Teaching methods	• Lesson	
5	Lab work	
Workload (incl. contact hours,	Total workload: 25h	
self-study hours)	Contact hours: 15h (12h lessons, 3h lab work)	
	Private study: 10h	
Credit points	1 ECTS	
Required and recommended	OS.2.1 Introduction to Operating systems and Unix environment	
prerequisites for joining the	NET.3.1 Local Networks	
module	NET.4.1 Computer Networks	
module	SE.4.2 Software Architecture	
Madula abiantivas/intended	SEC.4.1 Cybersecurity & cryptography	
Module objectives/intended	To understand the related architecture designs and technolo-	
learning outcomes	gies of cloud computing	
	• To explain the overall architecture and key design principles	
	of IoT systems, including both functional and non-functional	
	aspects	
	To design cloud-based IoT applications using proper cloud	
	services	
	To gain hands-on experience in key technologies for develop-	
	ing an IoT system, including sensor selection / interfacing, em-	
	bedded system programming, use of suitable network proto-	
	cols, and various cloud services (compute, storage, data ana-	
	lytics, management)	
	To gain design experience in solving a real-world problem us-	
	ing IoT and cloud technologies	
	 To gain both the experience and confidence in learning a new 	
	IoT technology independently	
	By the end of the course, students are expected to be able to:	
	 Describe the IoT and Cloud architectures. 	
	 Deploy Cloud Services using different cloud technologies. 	
	• Implement cloud computing elements such virtual machines,	
	web apps, mobileservices, etc.	
	 Establish data migration techniques from IoT devices to the 	
	cloud.	
	 Implement security features to protect data stored in the cloud. 	
	Use visualisation techniques to show data generated from the	
	IoT device.	
	Competencies: C2, C3, C4, C5, C6, C13	
Content	Unit 1 – Cloud Computing: main concepts	
	General introduction	
	Historical overview	
	Cloud characteristics	
	Business model	
	 Advantages and limits 	
	Unit 2 – Data centers	
	Definitions	
	Main components Croop Computing	
	Green Computing Security	
	Security	

	High Availability					
	Unit 3 – Cloud Services and deployment models					
	 IaaS (Infrastructure as a Service) 					
	PaaS (Platform as a Service)					
	SaaS (Software as a Service)					
	FaaS (Function as a Service)					
	Other services					
	Public Cloud					
	Private Cloud					
	Hybrid Cloud					
	Community Cloud					
	Unit 4 – Virtualization					
	Definitions					
	Architectures					
	Solutions					
	Servers virtualization					
	Containers					
	Storage virtualization					
	Unit 5 – Application of IoT & Cloud					
	IoT and cloud integration					
	 Application development and cloud processing 					
	 Security and Privacy for IoT/Cloud Computing 					
Examination forms	20% labs					
	 80% written examination 					
Study and examination require-						
ments	Student must achieve an overall minimum module mark of 10/20					
Reading list	Mell, P., & Grance, T. (2011). The NIST Definition of Cloud Com-					
i tota anig not	puting (800-145). National Institute of Standards and Technology					
	(NIST).					
	Duncan, C. H. (2017). Cloud computing gateway, cloud compu-					
	ting hypervisor, and methods. International Conference on Cloud					
	Computing.					
	Hennion, R., Tournier, H., & Bourgeois, E. (2014). Cloud compu-					
	ting: Décider - Concevoir - Piloter – Améliorer.					
	Plouin, G. (2014). Cloud Computing, Sécurité, stratégie d'entre-					
	prise et panorama du marché. Collection InfoPro, Dunod.					
	Rapport Cigref (2013). Fondamentaux du Cloud Computing: Le					
	point de vue des Grandes Entreprises.					
	Moyer, C. M. (2011). Building Applications in the Cloud: Con-					
	cepts, Patterns, and Projects. Addison-Wesley.					
	Marka E. A. & Lozano P. (2010) Evenutive's Ouida to Olaud					
	Marks, E. A., & Lozano, B. (2010). Executive's Guide to Cloud					
	Computing. Wiley.					
	Eagraud E. Z. Bonlahmar E. H. Elfilali, C. & Taumi, H. (2040)					
	Fagroud, F. Z., Benlahmar, E. H., Elfilali, S., & Toumi, H. (2019).					
	IOT et Cloud Computing : état de l'art. Colloque sur les Objets et					
	systèmes Connectés, Ecole Supérieure de Technologie de Casa-					
	blanca (Maroc), Institut Universitaire de Technologie d'Aix-Mar-					
	seille (France), Casablanca, Maroc.					
	Odun-Avo I Okereke C & Evwierodhene O (2018) Cloud					
	Odun-Ayo, I., Okereke, C., & Evwieroghene, O. (2018). Cloud Computing and Internet of Things - Issues and Developments.					
	Computing and internet of Things - issues and Developments.					
	Christos S Kostas P Byung-Gyu K & Gunta B B (2016)					
	Christos, S., Kostas, P., Byung-Gyu, K., & Gupta, B. B. (2016). Secure Integration of Internet-of-Things and Cloud Computing.					
	Future Generation Computer Systems.					

SE.5.3 Mobile Development

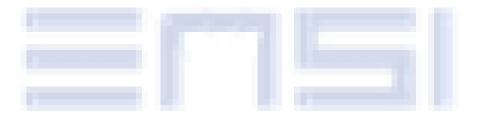
Module designation	SE.5.3 Mobile Development				
Semester(s) in which the mod- ule is taught	S5				
Person responsible for the mod- ule (coordinator)	Sabri ALLANI				
Teaching team	Sabri ALLANI				
Language	French				
Relation to curriculum	optional				
Teaching methods	lab works and project.				
Workload (incl. contact hours, self-study hours)	Total workload:25h Contact hours :15h (9h lesson, 6h lab works) Private study:10h				
Credit points	1 ECTS				
Required and recommended	AP.2.1, AP.2.2 and DAT.2.1				
prerequisites for joining the module					
Module objectives/intended learning outcomes	Key question: what learning outcomes should students attain in the module?				
	Knowledge:				
	 have a good understanding of the mobile app's con- text 				
	 have a basic knowledge of mobile dev frameworks 				
	 have a basic knowledge of mobile dev nameworks have good knowledge of which standards apply to mo- 				
	bile application and related constraints.				
	Competencies: C2, C3				
Content	Introduction to mobile mobile app development				
Content	Learn the basic principles of mobile app development using a				
	cross-platform solution.				
	Project				
	Project Proposal: Conceptualize and design your project				
	in the abstract and write a short proposal that includes the				
	project description, expected data needs, timeline, and				
	how you expect to complete it.				
	 Analysis and Planning: The application concept begins to 				
	develop at this point, after which it becomes a real mission.				
	Definition of use cases and capture of comprehensive functional codes are the first steps in the assessment and				
	planning strategy.				
	 UI / UX Design: A user-friendly interface is included in the 				
	UI/UX layout. The goal of the application product is to cre-				
	ate a wholly mobile experience that is intuitive and				
	straightforward to employ				
	App Development: Concurrently with the prototype, the				
	foundation stages of building an app are still essential.				
	Before you begin writing your codes, make sure you've done this:				
	 Specify the product backlog Select a technology package 				
	 Select a technology package Set application's building goals 				
	A standard mobile application project consists of three ma-				
	jor components:				
	 Back-end/server technology 				
	○ API(s)				
	• The mobile app front-end				
Examination forms	100% project eval				
Study and examination require-	10/20				
ments					

Reading list	Alessandria, S. (2018). Flutter Projects: A practical, project-based guide to building real-world cross-platform mobile applications and games (Vol. 53). Packt Publishing.
	Nagy, R. (2022). Simplifying Application Development with Kotlin Multiplatform Mobile (Vol. 61). Packt Publishing.

Semester 5 Modules: Specialization Financial Engineering (Ingénierie pour la Finance - IF-)

code	Title	type	Co cie	eff <u>i</u> EC nts	тs ^{Tot}	al wo Co load	rk- Privat ntact hours study
FIN.5.1	International Finance	compulsory	2	2	50	30	20
MAT.5.3	Numerical Optimization	compulsory	2	2	50	30	20
	The Risk Modelling and Dynamic Financial						
FIN.5.2	Risk Management	compulsory	2	2	50	30	20
FIN.5.3	Bank Management	compulsory	2	2	50	30	20
ISA.5.1	Big Data	compulsory	2	2	50	30	20
	Monte carlo methods and financial model						
FIN.5.4	simulation	compulsory	2	2	50	30	20
MAT.5.5	Data analysis	compulsory	2	2	50	30	20
MAT.5.4	Statistical Inference	optional	2	2	50	30	20
ISA.5.4	Business intelligence	optional	2	2	50	30	20
AI.5.1	Multi agent systems	optional	2	2	50	30	20
FIN.5.6	Valuation and financing of companies	compulsory	2	2	50	30	20
AI.5.12	Introduction to Deep Learning	compulsory	1	1	25	15	10
FIN.5.5	Quantitative Finance	compulsory	1	1	25	15	10
DOS.5.2	Blockchain	compulsory	1	1	25	15	10
SE.5.3	Mobile Development	optional	1	1	25	15	10
ISA.5.7	Distributed data Bases	optional	1	1	25	15	10
DOS.5.3	IoT	optional	1	1	25	15	10
	Module complémentaire 1		2	2	50	30	20
	Module complémentaire 2		2	2	50	30	20
	Module complémentaire 3		2	2	50	30	20
	Module complémentaire 4		1	1	25	15	10
	Module complémentaire 5		1	1	25	15	10
	Module complémentaire 6		1	1	25	15	10

FIN.5.1 International Finance

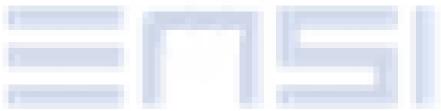

Module designation	FIN.5.1 International Finance
Semester(s) in which the module is taught	S5
Person responsible for the mod- ule (coordinator)	Snoussi Imen
Teaching team	Snoussi Imen
Language	French
Relation to curriculum	Compulsory
Teaching methods	lesson
Workload (incl. contact hours, self-study hours)	Total workload: 50h Contact hours : 30h (15h lessons, 15h exercises) Private study: 20h.
Credit points	2 ECTS
Required and recommended prerequisites for joining the module	Financial markets concepts
Module objectives/intended learning outcomes	To acquire a good knowledge of the functioning of the international monetary system, to understand the functioning of the spot and for- ward foreign exchange market, to understand the functioning of the operations on the various compartments of the foreign exchange market, to make known the various types of foreign exchange risks and the instruments which allow to cover them. Competencies: C11, C12, C13
Content	 I. INTRODUCTION TO THE FOREIGN EXCHANGE MARKET : History of the international monetary system The exchange rate regime in Tunisia Organisation of the international foreign exchange market Participants in the foreign exchange market Solution of the international foreign exchange market Foreign exchange transactions THE FOREIGN EXCHANGE MARKET IN THE SPOT MARKET : Definition and characteristics Exchange rate quotation methods The transition from rating with uncertainty to rating with certainty The calculation of cross rates Geographical arbitrage Triangular arbitration (for the bank's own account and for the customer's account) III. THE FORWARD FOREIGN EXCHANGE MARKET Definition and characteristics Notions of carry forward and backwardation

	 3) Forward foreign exchange market quotations 4) The mechanism for forming forward rates: forward outright exchange 5) Calculation of the forward price 6) The calculation of the forward price 7) Foreign exchange swaps IV. HEDGING CURRENCY RISK THROUGH CURRENCY OPTIONS 1) Origin and development of options markets 2) Over-the-counter markets 3) Organised markets 4) Calls/currencies 5) Puts/contracts 6) Determinants of currency options 7) The principle of hedging currency risk through currency options
Examination forms	35% continuous eval+65% written exam
Study and examination require- ments	10/20
Reading list	Bourguinat, Teïletche, Dupuy. (2007). Finance internationale. Du- nod. Krugman, P., & Obstfeld, M. (2012). International Economics (9th edition). Pearson.

MAT.5.3 Numerical Optimization

Module designation	MAT.5.3 Numerical Optimization
Semester(s) in which the module is taught	S:5
Person responsible for the mod- ule	Fethi Kadhi
Language	English
Relation to curriculum	Compulsory
Teaching methods	Lessons, Lab, Projects.
Workload (incl. contact hours, self-study hours)	Total workload:50h Contact hours :30h Private study:20h
Credit points	2 ECTS
Required and recommended prerequisites for joining the module	MAT.3.1Linear and nonlinear programming MAT.2.2 Numerical methods
Module objectives/intended learning outcomes	 Mathematical optimization or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. Optimization problems of sorts arise in all quantitative disciplines from computer science and engineeringto operations research and finance. the development of solution methods has been of interest in mathematics for centuries. R tool is a free open-source computing environment which works on several platforms such as Windows, Linux, and macOS. In recent years, there has been an increasing interest in using R software to perform the data analysis. Competencies: C1, C9, C13
Content	Ch:1 Basics of R 1.1 Data structures in R 1.2 Funtios in R 1.3 Decision-Making and Loop Statements 1.4 Graphics Ch:2 Optimality Conditions 2.1 First-Order Necessary Condition 2.2 Second-Order Necessary Condition 2.3 Second-Order Sufficient Condition Ch: 3 One-Dimensional Optimization Methods 3.1 Introduction 3.2 Golden Section Search Method 3.3 Newton–Raphson Method 3.4 Secant Method . Ch:4 Steepest Descent Method 4.1 Introduction 4.2 Basics of Steepest Descent Method 4.3 Steepest Descent Method for Quadratic Functions 4.4 Convergence Analysis of Steepest Descent Algorithm Ch:5 Conjugate Gradient Methods

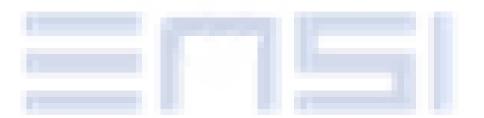
	 5.1 Introduction 5.2 Basics of Conjugate Direction 5.3 Convergence Analysis of Conjugate Direction Method 5.4 Method of Conjugate Gradient Ch: 6 Newton's Method 6.1 Introduction 6.2 Newton's Method for Multiple Unknowns 6.3 Convergence Analysis of Newton's Method
Examination forms	35%Mid-term quiz + 65% Written final exam
Study and examination require- ments	10/20;
Reading list	Mishra, S. K., & Ram, B. (2019). Introduction to Unconstrained Optimization with R. Springer. Gilli, M., Maringer, D., & Schumann, E. (2019). Numerical Meth- ods and Optimization in Finance. Academic Press.



FIN.5.2 The Risk Modelling and Dynamic Financial Risk Management

Module designation	FIN.5.2 The Risk Modelling and Dynamic Financial Risk Manage- ment
Semester(s) in which the module is taught	S5
Person responsible for the mod- ule (coordinator)	Mouna Ben Salah
Teaching team	Mouna Ben Salah
Language	French
Relation to curriculum	Compulsory
Teaching methods	Lesson
Workload (incl. contact hours, self-study hours)	Total workload: 50h Contact hours : 30h (21h lessons, 9 h exercises) Private study: 20h.
Credit points	2 ECTS
Required and recommended prerequisites for joining the module	Portfolio management, financial market
Module objectives/intended learning outcomes	The Risk Modeling and Dynamic Financial Risk Management course aims to understand the concept of financial risk, and to pro- vide information on the methods of measuring and managing this risk. This course will focus on market risk (equity market risk and inter- est rate risk related to movements in the term structure of interest rates). The classical methods of measuring this type of risk (stand- ard deviation) as well as modern methods (Value at Risk or VaR) are studied. Next, this course will present the instruments used to hedge against market risk, namely: forwards, futures, options and swaps. At the end of this course, the student will acquire the necessary tools to identify measure and hedge financial risks. Competencies: C11, C12, C13

Content	Chapter 1: Financial Risk Assessment I: Measures of Financial Asset Risk II. Value at Risk 1. Definition of VaR 2. Historical VaR 3. Parametric VaR 3.1 Calculation of the VaR of a stock position or a stock portfolio 3.2 Calculation of the VaR of a currency position 3.3 Calculation of the VaR of a bond position 3.4 Aggregate VaR 3.5 portfolio VaR a. Marginal VaR b. Incremental VaR c. Individual VaR d. The VaR component 4. VaR by Monte Carlo simulation 5.The VaR of a noption position 5.1 The VaR of a "Delta Normal" Option Position 5.2 VaR of a "Delta Gamma" Option Position 6. The expected short fall (ES) 7. Stressed VaR Chapter 2: Portfolio Insurance 1. Definition of Options 1. The Call Option 1. Uncovered Positions 11. Uncovered Positions 11. Portfolio Insurance 1. Stop-Loss Strategy 2. Option-based portfolio insurance 2.1 Put-based portfolio insurance 2.3 Cushion Method Insurance 3.3 Cushion Method Insurance 3.3 Cushion Method Insurance
	 Definition Risk measurement: Gap analysis methods Hedging of interest rate risk and firm OTC instruments. FRAs (Forward Rate Agreements) or rate guarantees 1.1 Definition 2. Mechanism 3. Calculation of the interest rate differential The Forward Rate Agreement 1.1 Definition 2. Mechanism 3. Borrower forward 4. Lender forward 3. Interest rate swap IV. Hedging interest rate risk and conventional OTC instruments The Collar The Floor The Borrowing Collar
Examination forms	3.2 The Lending Collar 35% continuous+65% written exam
Study and examination require- ments	10/20



FIN.5.3 Bank Management

Module designation	FIN.5.3 Bank Management
Semester(s) in which the module is taught	S5
Person responsible for the module (co- ordinator)	Mouna Ben Salah
Teaching team	Mouna Ben Salah
Language	French
Relation to curriculum	Compulsory
Teaching methods	Lesson
Workload (incl. contact hours, self-study hours)	Total workload: 50h Contact hours : 30h (20h lessons, 10h exercises) Private study: 20h.
Credit points	2 ECTS
Required and recommended prerequi- sites for joining the module	Financial analysis
Module objectives/intended learning outcomes	The Banking Management course aims to introduce stu- dents to the different types of banks and their respective businesses and to identify the risks they face through their activity (interest rate risk, market risk, credit risk, operational risk) and the mechanisms of credit risk management under the effect of tightening regulations and capital allocation re- quirements through the Basel I, Basel II and Basel III agree- ments Competencies: C11, C12, C13
Content	 Chapter 1: Organization and functioning of the credit institution: the Tunisian banking system Definition and mission of the credit institution Rules of constitution The three main areas of banking activity Architecture of the Tunisian banking sector Chapter 2: Banking risks, definition and typology Typologies of banking risks The credit risk Market risk Operational risk Liquidity risk Global Interest Rate Risk Chapter 3: The Regulatory Framework History of the Basel Committee Role of the Basel Committee The Basel I agreement The three pillars of the Basel II agreement 4.1 Minimum capital requirement The contributions of the Basel III agreement Chapter 4 : Credit risk management

	Section 1: Credit risk assessment I. The traditional approach to assessing credit risk: fi- nancial analysis II. The new approach to credit risk assessment 1. The credit scoring method 2. the Rating 3. RAROC: Risk Adjusted Return On Capital 4. Credit VaR 5. Measuring the credit risk of a bond portfolio Section 2. Credit risk management I. Traditional credit risk management instruments 1. Regulatory management 2. Guarantees 3. Provisioning II. New techniques 1. Securitization 2. Credit derivatives 2.1 Definition of credit derivatives 2.2 Credit Default Swaps (CDS) 2.3 Credits Linked Notes: "CLN 2.4 Total Return Swap: "TRS
Examination forms	35% continuous+65% written exam
Study and examination requirements	10/20
Reading list	 Dumontier, P., & Dupré, D. (2005). Pilotage bancaire: Les normes IAS et la réglementation Bâle II. Revue Banque Editeur. Van Greuning, H., & Bratanovic, S. (2004). Analyse et Gestion du Risque Bancaire: Un cadre de référence pour l'évaluation de la gouvernance d'entreprise et du risque financier. ESKA. Coussergues, S., & Bourdeaux, G. (2013). Gestion de la banque du diagnostic à la stratégie. Dunod. Banque des règlements internationaux. (2017). Bâle III: Fi-
	nalisation des réformes de l'après-crise.

Module designation	ISA.5.1 Big Data
Semester(s) in which the mod- ule is taught	S5
Person responsible for the mod- ule (coordinator)	Raoudha Chebil
Language	French
Relation to curriculum	Compulsory
Teaching methods	lesson, lab works, presentations.
Workload (incl. contact hours, self-study hours)	Total workload: 50h Contact hours: 30h (20h lessons + 10h lab works) Private study ^l : 20 h
Credit points	2 ECTS
Required and recommended prerequisites for joining the module	DAT.1.1 Database and DBMS
Module objectives/intended learning outcomes	Knowledge: Students: -Master the basic building blocks of the Hadoop platform, namely HDFS and MapReduce, and have an idea of the com- ponents of its ecosystem; -Master the MapReduce approach for problem solving; -Understand the limits of the relational model and know the dif- ferent models of NOSQL databases. Competencies: C4, C7, C8

Content	Chapter I – Introduction to Big Data 1. Motivations 2. Definition 3. The 3Vs and the additional Vs 4. Benefits and challenges 5. Application examples 6. Stages of a Big Data project 7. New professions 8. Related fields Chapter II – Hadoop: Building Blocks 1. Hadoop presentation 2. Hadoop presentation 2. Hadoop presentation 2. Hadoop presentation 3. Hadoop cosystem 4. HDFS 5. MapReduce V1 6. MapReduce V2 7. Design Patterns MapReduce Chapter II - Advanced Processing Tools 1. 1. Data processing types 2. MapReduce review 3. Abstraction languages a. Pig b. Hive 4. Apache Spark Chapter IV - NOSQL Databases 1. DBMS limits 3. BD NOSQL 4. </th
Examination forms	35% continuous evaluation (Lab works, presentations) ; 65% written exam
Study and examination require- ments	10/20

Reading list	 Mooc "Fundamentals for Big Data", Télécom Paris- Tech "Introduction to Hadoop and MapReduce", University Nice Sophia Antipolis Books Bruchez, R. (2015). NoSQL databases and BigData: Understanding and implementing. Editions Eyrolles.
	 Marr, B. (2015). Big Data: Using SMART big data, analytics and metrics to make better decisions and improve performance. John Wiley & Sons. Zikopoulos, P., Eaton, C., et al. (2011). Understanding
	big data: Analytics for enterprise class Hadoop and streaming data. McGraw-Hill Osborne Media.
	Classes Nerzic, P. (2016). Hadoop tools for Big Data. Rennes1 University, France.

FIN.5.4 Monte carlo methods and financial model simulation

Simulation	
Module designation	FIN.5.4 Monte Carlo Methods & Simulation of Financial Models
Semester(s) in which the mod- ule is taught	S5
Person responsible for the module (coordinator)	I- Amor Oueslati
Teaching team	
Language	French
Relation to curriculum	Compulsory
Teaching methods	lecture, lab works
Workload (incl. contact hours, self-study hours)	Total workload: 50h Contact hours: 30h (20h lessons, 10h lab works) Private study:20h
Credit points	2 ECTS
Required and recommended prerequisites for joining the module	Probability, inferential statistics, Bayesian statistics, stochastic calculus, stochastic process, Financial Mathematics
Module objectives/intended learning outcomes	Competencies: C1, C9, C13
Content	1. Introduction to Monte Carlo Simulation
	2. Simulation of random variables
	3. Simulation of Diffusion Processes & Time Discrete Methods
	4. Variance reduction techniques: - antithetic variable, control

.

	 variable and pairing of moments - Strategic sampling, Stratified sampling, and Latin hypercube 5. Option pricing and value-at-risk estimation 6. Model estimation and calibration 7.MCMC
Examination forms	35% continuous evaluation (Lab works, presentations) ;65% writ- ten exam
Study and examination require- ments	Requirements for successfully passing the module
Reading list	 Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering (Stochastic Modelling and Applied Probability) (v. 53). Springer-Verlag New York, LLC. Lamberton, D., & Lapeyre, P. (1999). Introduction au calcul stochastique appliqué à la finance. Ellipses. Rennie, A. (1996). Financial Calculus: An Introduction to Derivative Pricing. Cambridge University Press. Steele, J. M. (2003). Stochastic Calculus and Financial Applications. Springer-Verlag New York, LLC. Duffie, D. (1992). Dynamic Asset Pricing Theory. Princeton University Press. Karatzas, I., & Shreve, S. E. (1988). Brownian Motion and Stochastic Calculus. Springer.

MAT.5.5 Data analysis

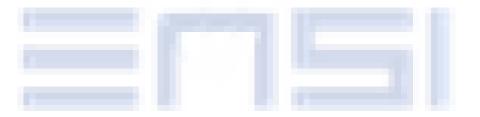
Module designation	MAT.5.5 Data Analysis
Semester(s) in which the mod- ule is taught	Sem:5
Person responsible for the mod- ule	Fethi Kadhi
Language	French
Relation to curriculum	Compulsory
Teaching methods	Lessons, Lab, Projects.
Workload (incl. contact hours, self-study hours)	Total workload:50h Contact hours :30h Private study:20h
Credit points	2 ECTS
Required and recommended prerequisites for joining the module	MAT.1.1 Probabilty and statstics
Module objectives/intended learning outcomes	The emphasis in this course is on financial data and how to model and analyze it. Understanding financial data may increase one's success in the markets Competencies:C1, C9
Content	 The Nature of Financial Data The Nature of Financial Data Financial Assets and Markets Frequency Distributions of Returns Volatility Exploratory Financial Data Analysis The Empirical Data Analysis The Empirical Cumulative Distribution Function Graphical Methods in Exploratory Analysis Statistical Models and Methods of Inference Models Optimization in statistics Properties of estimators Regression Models Linear regression model ARMA and ARIMA Models
Examination forms	100% final exam
Study and examination require- ments	10/20

Reading list	Collard, JF. Hands-On Data Analysis in R for Finance. CRC Press (Taylor & Francis Group, LLC). DOI: 10.1201/9781003320555.


MAT.5.4 Statistical Inference

Module designation	MAT.5.4 Statistical inference
Semester(s) in which the module is taught	Sem:5
Person responsible for the mod- ule	Fethi Kadhi
Language	French
Relation to curriculum	Optional
Teaching methods	Lessons, Lab, Projects.
Workload (incl. contact hours, self-study hours)	Total workload:50h Contact hours :30h Private study:20h
Credit points	2 ECTS
Required and recommended prerequisites for joining the module	MAT.1.1 Probabilty and statstics
Module objectives/intended learning outcomes	In a statistical investigation, it is known that for reasons of time or cost, one may not be able to study each individual element of the population. In such a situation, a random sample should be taken from the population, and the inference can be drawn about the population on the basis of the sample. Hence, statistics deals with the collection of data and their analysis and interpretation. In this book, the problem of data collection is not considered. We shall take the data as given, and we study what they have to tell us. The main objective is to draw a conclusion about the unknown population characteristics on the basis of information on the same characteristics of a suitably selected sample.
Content	 Basics of R Types of R Theory of Sampling

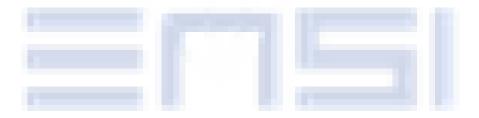
	 6. Regression: Fitting a Straight Line 6.1. Least Squares Regression 6.2. Properties of the Least Squares Estimators 6.3 Estimating the Error Variance r
Examination forms	100% final exam
Study and examination require- ments	10/20
Reading list	Bartoszynski, R., & Niewiadomska-Bugaj, M. (2020). Probability and Statistical Inference, Third Edition. Wiley-Interscience.
	Deshmukh, S., & Kulkarni, M. (2021). Asymptotic Statistical Infer- ence: A Basic Course Using R. Springer.



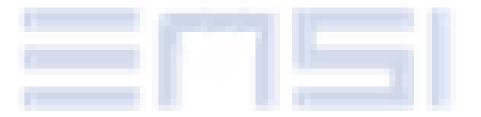
ISA.5.4 Business intelligence

Module designation	ISA.5.4 Business intelligence
Semester(s) in which the mod- ule is taught	S5
Person responsible for the module (coordinator)	Manel BenSassi
Language	French
Relation to curriculum	Optional
Teaching methods	lesson, lab works.
Workload (incl. contact hours, self-study hours)	Total workload: 50H Contact hours:30h (21H lesson, 09H Lab works). Self study: 20h
Credit points	2 ECTS
Required and recommended prerequisites for joining the module	DAT.1.1 Database and DBMS
Module objectives/intended learning outcomes	 This course refers to technologies, applications and practices of heterogeneous data integration, storage, multidimensional analysis, and visualization to support business decision making. Thus, the student will be able to propose concrete conceptual and technological architecture for the integration od heterogenous data in the professional environment as he will acquire many competencies such as: Become able to evaluate the technologies that make up BI (data Warehousing, OLAP) Become able to plan the implementation of a BI architecture.
Content	Chapter 1 : Understanding Business intelligence The challenge of decision making What is business intelligence The BI value chain and value Chapter 2: Data Integration Data integration motivation ETL Process ETL techniques Chapter 3: Data Storage: Data Warehousing What is data warehousing? Data Marts and analytical Data Organization of DataWarehouse Data access Chapter 4: Multi dimensional Analysis with OLAP Definitions OLAP vs OLTP Operational data stores Multi-Dimensions techniques OLAP architecture Chapter 5: MDX Language Problem presentation MDX Syntax and Request
Examination forms	35% Continues evaluation + 75% Written exam
Study and examination require- ments	10/20

Reading list	Fernandez, A. (2013). Les nouveaux tableaux de bord des managers: Le pro- jet Business intelligence clés en main (6th ed.). Eyrolles.
	Fernandez, A. (2013). L'essentiel du tableau de bord: Concevoir le tableau de bord de pilotage avec Microsoft Excel (4th ed.). Eyrolles.
	Galzy, C., Girona, P., Martin, B., Nicoloso, C., & Vandermoere, J. (May 2010). La Business Intelligence, Livre Blanc.


AI.5.1 Multi agent systems

Module designation	AI.5.1 MultiAgent Systems
Semester(s) in which the module is taught	S5
Person responsible for the module (coordinator)	Narjès Bellamine Ben Saoud
Language	French/English
Relation to curriculum	Compulsory
Teaching methods	lesson, lab works, project, seminar.
Workload (incl. contact hours, self- study hours)	Total workload:50h Contact hours :30h Private study:20h
Credit points	2 ECTS
Required and recommended pre- requisites for joining the module	SE.3.1 Software Engineering AI.3.1
Module objectives/intended learning outcomes	 Master the concepts of agent and multi-agent systems Study and apply a design methodology for a multi-agent system. Learn the development of a multi-agent system Explore complementary research questions Competencies: C1, C7
Content	Chapter 1: Introduction to MAS Chapter 2: Intelligent Agents Chapter 3: Agents architectures Chapter 4: Methodologies for developing multi-agent systems Chapter 4: MAS Development environments & case study
Examination forms	35% Continues evaluation + 65% Written exam
Study and examination require- ments	10/20
Reading list	Ferber, J. (1995). Les systèmes multi-agents. InterEditions.
	Wooldridge, M. (2002). An Introduction to MultiAgent Systems. Wiley.
	Russell, S., & Norvig, P. (2006). Intelligence Artificielle (2nd ed., 2ème Cha- pitre). Pearson Education France.
	Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th ed.). Pearson.


FIN.5.6 Valuation and financing of companies

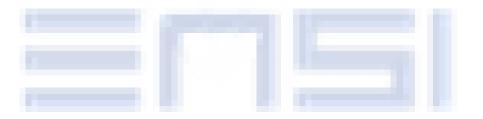
Module designation	FIN.5.6 Valuation and financing of companies
Semester(s) in which the module is taught	S5
Person responsible for the mod- ule (coordinator)	Snoussi Imen
Teaching team	Snoussi Imen
Language	French
Relation to curriculum	Compulsory
Teaching methods	lesson
Workload (incl. contact hours, self-study hours)	Total workload:25h Contact hours :15h Private study:10h
Credit points	1 ECTS
Required and recommended prerequisites for joining the module	
Module objectives/intended learning outcomes	 This course aims to present mathematical methods adapted to the interests of engineering students in the constantly evolving fields of analysis, processing, filtering and estimation of data as a support for information. In the first part, it aims to introduce, on a mathematical level, the concepts of measurement theory, distributions, convolution and Fourier analysis of signals. Secondly, a series of practical work sessions using Matlab constitutes a first contact for our engineering students with this programming language which allows them to better understand certain theoretical aspects related to the processing of speech, images and digital transmission. Competencies: C11, C12, C13
Content	I. Investment decision in a context of certainty :
	 1) The criteria for evaluating the profitability of a project (Van, IRR, DR) 2) Calculation of investment parameters 3) Calculation of cash flows 4) Study of conflicting NPV and IRR cases (NPV replicated to infinity, equivalent annuity) II. Investment decision in a context of risk and uncertainty : 1) Projects that are independent of the company's activity (Use of cash flow distribution, Use of NPV distribution: Decision tree technique) 2) Projects that are integrated into the company's activities III. Financing choices :

	 Definition of the Weighted Average Cost of Capital The cost of the various sources of financing (common shares, preferred shares, bank loans, bonds) Formal expression of the Weighted Average Cost of Capital (choice of weights) The impact of debt on the risk and return on common equity (financial leverage, optimal capital structure)
Examination forms	35% continuous eval+65% written exam
Study and examination require- ments	10/20
Reading list	Vernimmen, P. (2020). Finance d'entreprise (19th ed.). Dalloz books.
	Pilverdier, J., Gillet, P., Guidici, S., & Vinhas Pereira, C. (2016). Finance d'entreprise (9th ed.). Economica.
	Le Gros, G. (2018). Finance d'entreprise (3rd ed.). Dunod.

AI.5.12 Introduction to Deep Learning

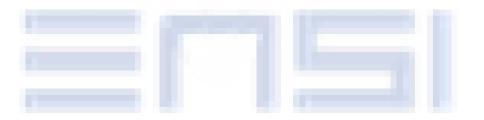
Module designation	AI.5.12 Introduction to Deep Learning
Semester(s) in which the module is taught	S5
Person responsible for the module (coordinator)	Rym Besrour
Teaching team	Rym Besrour
Language	French
Relation to curriculum	Compulsory
Teaching methods	Lesson and project
Workload (incl. contact hours, self- study hours)	Total workload:25h Contact hours :15h Private study:10h
Credit points	1 ECTS
Required and recommended pre- requisites for joining the module	MAT.1.1: Probability and Statistics AI .3.1.: IA & Machine Learning Students must be competent in python.
Module objectives/intended learn- ing outcomes	 Knowledge: Understand generic machine learning terminology Understand motivation and functioning of the most common types of deep neural networks Understand the choices and limitations of a model for a given setting Apply deep learning techniques to practical problems Critically evaluate model performance and interpret results Competencies: C1, C9

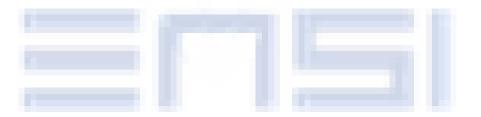
Content	Introduction Chapter1: <u>Applied Math and Machine Learning Basics</u> • <u>Linear Algebra</u> • <u>Probability and Information Theory</u> • <u>Numerical Computation</u> • <u>Machine Learning Basics</u> Chapter2: <u>Modern Practical Deep Networks</u> • <u>Deep Feedforward Networks</u> • <u>Deep Feedforward Networks</u> • <u>Regularization for Deep Learning</u> • <u>Optimization for Training Deep Models</u> • <u>Convolutional Networks</u> • <u>Sequence Modeling: Recurrent and Recursive Nets</u> • <u>Practical Methodology</u> • <u>Applications</u> Chapter3: <u>Deep Learning Research</u> • <u>Autoencoders</u> • <u>Deep Generative Models</u> Projects ideas : • <u>Smart routing</u> • <u>Smart home security</u> • <u>Smart energy managment</u>
Examination forms	100% project evaluation
Study and examination require- ments	10/20
Reading list	Géron, A. (2020). Deep Learning avec Keras et TensorFlow (2e édi- tion). Dunod. Charniak, E. (2021). Introduction au Deep Learning. Dunod.


FIN.5.5 Quantitative Finance

Module designation	FIN.5.5 Quantitative Finance
Semester(s) in which the module is taught	S5
Person responsible for the mod- ule (coordinator)	Mouna Ben Salah
Teaching team	Mouna Ben Salah
Language	French
Relation to curriculum	Compulsory
Teaching methods	Lesson
Workload (incl. contact hours, self-study hours)	Total workload: 25h Contact hours : 15h (10h lessons, 5h exercises) Private study: 10h.
Credit points	2 ECTS
Required and recommended prerequisites for joining the module	Stochastic calculus, differential equations. Portfolio Management.
Module objectives/intended learning outcomes	The objective of the Numerical Optimization Methods in Finance course is to introduce students to the most commonly used numerical methods in finance and mainly to the numerical methods used in the valuation of derivative products. Competencies:C11, C12, C13
Content	Chapter 1: The Discrete-Time Option Pricing Model: the Cox Ross and Robinstein model (1985) I. The one Period Binomial Model 1. Call options 2. Put options II. Extension of the model to two periods III. Generalization of the binomial formula to n periods IV. Dynamic hedging V. Taking dividends into account 1. Case of a known proportional dividend 2. Case of a known proportional dividend 2. Case of a known dividend amount Chapter 2: Option Pricing in Continuous Time: The Black- Scholes Model I. Black-Scholes partial derivative equation 1. Assumptions 2. Itô's lemma 4. The Black-Scholes valuation formula II. The Greek letters 1. The delta 2. The gamma 3. Theta 4. The Vega 5. The Rho III. The dynamic hedging 1. The delta hedging 2. The delta gamma hedging

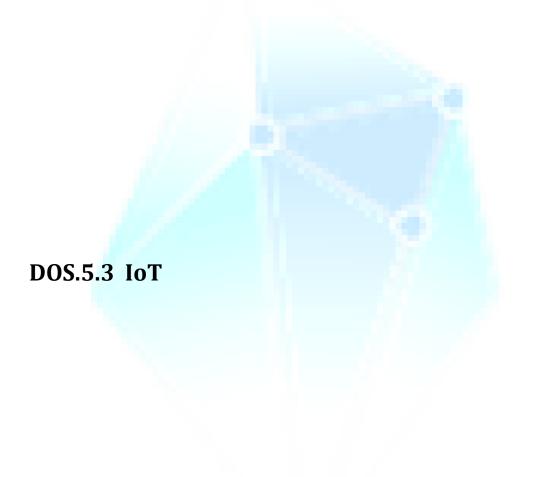
	3. Delta vega hedging 4. The delta gamma vega hedging
Examination forms	100% written exam
Study and examination require- ments	10/20
Reading list	 Bellalah, M. (2003). Gestion des risques et produits dérivés classiques et exotiques. Collection: Gestion Sup. Dunod. François, P. (2005). Les produits dérivés financiers: Méthodes d'évaluation. Dunod. Hull, J. (1997). Options, futures and other derivatives (3rd ed.). Prentice Hall. Huu Tue, H., Van Son L., Issouf S. (2006). Simulation Stochastiques et application en finance avec programmation Matlab. Economica. Khoury, N., Laroche, P., & François, P. (2010). Introduction aux instruments financiers dérivés. Les presses de l'université Laval, Québec.
	Racicot, F., & Théoret, R. (2006). Finance computationnelle et ges- tion des risques: Ingénierie financière avec applications Excel et Matlab. Les presses de l'université Laval, Québec.


DOS.5.2 Blockchain


Module designation	DOS.5.2 Blockchain
Semester(s) in which the module is taught	S5
Person responsible for the module	Mohamed Houcine Hdhili, Hanen Idoudi
Teachers team	Hanen Idoudi
Language	French
Relation to curriculum	Optional
Teaching methods	Lesson, Lab works
Workload (incl. contact hours, self- study hours)	Total workload:25h Contact hours): 15h (9h lesson, 6h lab works) Private study:in hours: 10h
Credit points	1 ECTS
Required and recommended prereq- uisites for joining the module	SEC.4.1 Cybersecurity and Cryptography
Module objectives/intended learning outcomes	 Knowledge: After completing this course, students should be able to: Explain blockchain and how it is applied across industries. Describe key principles of blockchain technology and the benefits and value that they bring to enterprises. Explain the role of a shared ledger. Explain fundamental concepts in Hyperledger Fabric. Describe the elements of a business network, the role of channels, and how the world state is maintained. Develop, test, debug, and deploy chaincode with IBM Blockchain Platform Extension for Visual Studio Code Apply concepts of blockchain security, identity and access control, and data privacy to blockchain solutions. Write applications that interact with a blockchain network. Describe patterns, best practices, and reference architectures for integration from enterprise applications to blockchain networks.
	Competencies: C6, C13
Content	Unit 1. Blockchain overview Unit 2. Introduction to chaincode development Unit 3. Chaincode query methods Unit 4. Best practices for writing, testing, and debugging chaincode Unit 5. Identity and access control Unit 6. Data privacy Unit 7. Basics of application development Unit 8. Blockchain integration and advanced application develop- ment
Examination forms	100% written exam

Study and examination requirements	10/20
Reading list	IBM Blockchain Developer – Official course material

SE.5.3 Mobile Development



Module designation	SE.5.3 Mobile Development
Semester(s) in which the module is taught	S5
Person responsible for the module (coordinator)	Sabri ALLANI
Teaching team	Sabri ALLANI
Language	French
Relation to curriculum	Compulsory
Teaching methods	lab works and project.
Workload (incl. contact hours, self- study hours)	Total workload: 25h Contact hours : 15h Private study : 10h
Credit points	1 ECTS
Required and recommended pre- requisites for joining the module	AP.2.1, AP.2.2 and DAT.2.1
Module objectives/intended learning outcomes	Key question: what learning outcomes should students attain in the module? Knowledge: have a good understanding of the mobile app's context have a basic knowledge of mobile dev frameworks have good knowledge of which standards apply to mobile application and related constraints. Competencies: C2, C3

Content	 Introduction to mobile mobile app development Learn the basic principles of mobile app development using a cross-platform solution. Project Project Proposal: Conceptualize and design your project in the abstract and write a short proposal that includes the project description, expected data needs, timeline, and how you expect to complete it. Analysis and Planning: The application concept begins to develop at this point, after which it becomes a real mission. Definition of use cases and capture of comprehensive functional codes are the first steps in the assessment and planning strategy. UI / UX Design: A user-friendly interface is included in the UI/UX layout. The goal of the application product is to create a wholly mobile experience that is intuitive and straightforward to employ App Development: Concurrently with the prototype, the foundation stages of building an app are still essential. Before you begin writing your codes, make sure you've done this: Specify the product backlog Select a technology package Set application project consists of three major components: Back-end/server technology API(s) The mobile app front-end
Examination forms	100% project eval
Study and examination require- ments	10/20
Reading list	 Alessandria, S. (2018). Flutter Projects: A practical, project-based guide to building real-world cross-platform mobile applications and games (Vol. 53). Packt Publishing. Nagy, R. (2022). Simplifying Application Development with Kotlin Multiplatform Mobile (Vol. 61). Packt Publishing.

ISA.5.7 Distributed databases

Module designation	ISA.5.7 Distributed Databases
Semester(s) in which the module is taught	S5
Person responsible for the module (coordinator)	Raoudha KHCHERIF
Language	French
Relation to curriculum	Compulsory
Teaching methods	lecture, lesson, assignment, labs
Workload (incl. contact hours, self- study hours)	Total workload: 25h Contact hours: 15h Private study: 10h
Credit points	1 ECTS
Required and recommended prereq- uisites for joining the module	DAT.2.1 , DAT.2.2, NET3.1, NET3.2, NET4.1
Module objectives/intended learning outcomes	This course will deal with the fundamental issues in large distributed database systems which are motivated by the computer networking and distribution of processors, and control. The theory, design, specification, implementation, and performance of large systems will be discussed. Competencies: C1, C2, C8, C13
Content	I INTRODUCTION II. BDR DESIGN AND IMPLEMENTATION II. TRANSACTION AND COMPETITOR ACCESS IV. OPTIMIZATION OF DISTRIBUTED QUERIES
Examination forms	100% written Exam
Study and examination require- ments	10/20
Reading list	Özsu, M. T., & Valduriez, P. (2011). Principles of Distributed Data- base Systems. Springer.
	Rahimi, S. K. (2010). Distributed Database Management Systems. John Wiley & Sons Inc.

Module designation	DOS.5.3 IoT
Semester(s) in which the module is taught	S5
Person responsible for the module (coordinator)	Hanen Idoudi
Language	French
Relation to curriculum	Compulsory
Teaching methods	lecture, project
Workload (incl. contact hours, self- study hours)	Total workload: 25h Contact hours: 15h Private study: 10h
Credit points	1 ECTS
Required and recommended pre- requisites for joining the module	Existing competences in networking
Module objectives/intended learning outcomes	 The purpose of this course is to study the fundamental concepts of Internet of Things. At the end of the course, the students will be able: 1. Understand the basic concepts of Internet of Things (IoT) 2. Identify the main components of the IoT ecosystem 3. Explore the major applications in IoT 4. Understand the architecture and protocol stack proposed for IoT 5. Set up the specific requirements to design the logic and network architectures of an IoT application Competencies: C2, C3, C9

Content	Chapter I – Introduction to the Internet of Things - The inception of IoT - Basic concepts : smart objects, global connectiv- ity, sensors, etc. - IoT Ecosystem - IoT challenges Chapter II – IoT Applications and architectures - IoT Applications - IoT Applications - IoT architecture layers - Connectivity models in IoT Chapter III – Networks technologies in IoT - IoT networks technologies classification - Long range communication networks over- view - Short range communication networks over- view
	Chapter IV – Middelwares and Application protocols for IoT - Web of Things: concepts and communica- tion's models - WoT : Data Standards - IoT middelwares - Publish/subscribe model - WoT : Data exchange protocols - MQTT - CoAP Practical Work (personal project) : Design of a simple IoT applica- tion
Examination forms	Oral presentation of the personal project.
Study and examination require- ments	To acquires at least 10/20 in the oral of the personal project
Reading list	Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ay- yash, M. (January 2015). Internet of Things: A Survey on Ena- bling Technologies, Protocols and Applications. IEEE Communi- cations Surveys & Tutorials.